Scientific Assistance CS 15-10-2017
October 9, 2023Candidate-key
October 9, 2023Computer-Networks
Question 30 |
A TCP message consisting of 2100 bytes is passed to IP for delivery across two networks. The first network can carry a maximum payload of 1200 bytes per frame and the second network can carry a maximum payload of 400 bytes per frame, excluding network overhead. Assume that IP overhead per packet is 20 bytes. What is the total IP overhead in the second network for this transmission?
40 bytes | |
80 bytes | |
120 bytes | |
160 bytes |
Question 30 Explanation:
At Router-1:
2120B reach R1’s network layer. It removes original IP header, fragments data part at IP and then appends IP header to all fragments and forwards . So, it divides 2100 Bytes into two fragments of size 1200 and 900. And both fragments are sent to R2.
At Router-2:
Both fragments that reach R2 exceed MTU at R2. So, both are fragmented. First packet of 1200B is fragmented into 3 packets of 400 Bytes each. And second packet of 900B is fragmented into 3 fragments of 400, 400 and 100 Bytes respectively.
So, totally 6 packets reach destinations.
So, total IP overhead = 6 × 20 = 120 Bytes
2120B reach R1’s network layer. It removes original IP header, fragments data part at IP and then appends IP header to all fragments and forwards . So, it divides 2100 Bytes into two fragments of size 1200 and 900. And both fragments are sent to R2.
At Router-2:
Both fragments that reach R2 exceed MTU at R2. So, both are fragmented. First packet of 1200B is fragmented into 3 packets of 400 Bytes each. And second packet of 900B is fragmented into 3 fragments of 400, 400 and 100 Bytes respectively.
So, totally 6 packets reach destinations.
So, total IP overhead = 6 × 20 = 120 Bytes
Correct Answer: C
Question 30 Explanation:
At Router-1:
2120B reach R1’s network layer. It removes original IP header, fragments data part at IP and then appends IP header to all fragments and forwards . So, it divides 2100 Bytes into two fragments of size 1200 and 900. And both fragments are sent to R2.
At Router-2:
Both fragments that reach R2 exceed MTU at R2. So, both are fragmented. First packet of 1200B is fragmented into 3 packets of 400 Bytes each. And second packet of 900B is fragmented into 3 fragments of 400, 400 and 100 Bytes respectively.
So, totally 6 packets reach destinations.
So, total IP overhead = 6 × 20 = 120 Bytes
2120B reach R1’s network layer. It removes original IP header, fragments data part at IP and then appends IP header to all fragments and forwards . So, it divides 2100 Bytes into two fragments of size 1200 and 900. And both fragments are sent to R2.
At Router-2:
Both fragments that reach R2 exceed MTU at R2. So, both are fragmented. First packet of 1200B is fragmented into 3 packets of 400 Bytes each. And second packet of 900B is fragmented into 3 fragments of 400, 400 and 100 Bytes respectively.
So, totally 6 packets reach destinations.
So, total IP overhead = 6 × 20 = 120 Bytes
Subscribe
Login
0 Comments