DatabaseManagementSystem
October 14, 2023DatabaseManagementSystem
October 14, 2023DatabaseManagementSystem
Question 11

Consider a relational table R that is in 3NF, but not in BCNF. Which one of the following statements is TRUE?
A cell in R holds a set instead of an atomic value.


R has a nontrivial functional dependency X→A, where X is not a superkey and A is a nonprime attribute and X is not a proper subset of any key.


R has a nontrivial functional dependency X→A, where X is not a superkey and A is a nonprime attribute and X is a proper subset of some key.


R has a nontrivial functional dependency X→A, where X is not a superkey and A is a prime attribute.

Question 11 Explanation:
R(ABCD)
FDs:
AB → C
BC → A
(BD)^{+} = BD ✖
(ABD)^{+} = ABDC ✔
(CBD)^{+} = CBDA ✔
Candidate keys = {ABD, CBD}
• The relation R is in 3NF, as there are no transitive dependencies.
• The relation R is not in BCNF, because the left side of both the FD’s are not Super keys.
• In R, BC → A is a nontrivial FD and in which BC is not a Super key and A is a prime attribute.
FDs:
AB → C
BC → A
(BD)^{+} = BD ✖
(ABD)^{+} = ABDC ✔
(CBD)^{+} = CBDA ✔
Candidate keys = {ABD, CBD}
• The relation R is in 3NF, as there are no transitive dependencies.
• The relation R is not in BCNF, because the left side of both the FD’s are not Super keys.
• In R, BC → A is a nontrivial FD and in which BC is not a Super key and A is a prime attribute.
Correct Answer: D
Question 11 Explanation:
R(ABCD)
FDs:
AB → C
BC → A
(BD)^{+} = BD ✖
(ABD)^{+} = ABDC ✔
(CBD)^{+} = CBDA ✔
Candidate keys = {ABD, CBD}
• The relation R is in 3NF, as there are no transitive dependencies.
• The relation R is not in BCNF, because the left side of both the FD’s are not Super keys.
• In R, BC → A is a nontrivial FD and in which BC is not a Super key and A is a prime attribute.
FDs:
AB → C
BC → A
(BD)^{+} = BD ✖
(ABD)^{+} = ABDC ✔
(CBD)^{+} = CBDA ✔
Candidate keys = {ABD, CBD}
• The relation R is in 3NF, as there are no transitive dependencies.
• The relation R is not in BCNF, because the left side of both the FD’s are not Super keys.
• In R, BC → A is a nontrivial FD and in which BC is not a Super key and A is a prime attribute.
Subscribe
Login
0 Comments