GATE 1993
March 17, 2025GATE 1993
March 17, 2025GATE 1993
Question 39 |
Let A be a finite set of size n. The number of elements in the power set of A × A is:
22n | |
2n2 | |
(2n)2 | |
(22)n | |
None of the above |
Question 39 Explanation:
Cardinality of A = n × n = n2
A = {1,2}
|A| = {∅, {1}, {2}, {1,2}}
Cardinality of power set of A = 2n2
A × A = {1,2} × {1,2}
= {(1,1), (1,2), (2,1), (2,2)}
Cardinality of A × A = n2
Cardinality of power set of A × A = 2n2
A = {1,2}
|A| = {∅, {1}, {2}, {1,2}}
Cardinality of power set of A = 2n2
A × A = {1,2} × {1,2}
= {(1,1), (1,2), (2,1), (2,2)}
Cardinality of A × A = n2
Cardinality of power set of A × A = 2n2
Correct Answer: B
Question 39 Explanation:
Cardinality of A = n × n = n2
A = {1,2}
|A| = {∅, {1}, {2}, {1,2}}
Cardinality of power set of A = 2n2
A × A = {1,2} × {1,2}
= {(1,1), (1,2), (2,1), (2,2)}
Cardinality of A × A = n2
Cardinality of power set of A × A = 2n2
A = {1,2}
|A| = {∅, {1}, {2}, {1,2}}
Cardinality of power set of A = 2n2
A × A = {1,2} × {1,2}
= {(1,1), (1,2), (2,1), (2,2)}
Cardinality of A × A = n2
Cardinality of power set of A × A = 2n2