Question 9741 – Propositional-Logic
February 11, 2024Question 9650 – Propositional-Logic
February 11, 2024Question 9611 – Propositional-Logic
Consider the following formula a and its two interpretations I1 and I2
α: (∀x)[Px ⇔ (∀y)[Qxy ⇔ ¬Qyy]] ⇒ (∀x)[¬Px] I1: Domain: the set of natural numbers Px ≡ 'x is a prime number' Qxy ≡ 'y divides x' I2: same as I1 except that Px = 'x is a composite number'.
Which of the following statements is true?
Correct Answer: D
Question 13 Explanation:
Given that:
(∀x)[Px ⇔ (∀y)[Qxy ⇔ ¬Qyy]] ⇒(∀x)[¬Px]
Qyy is always true, because y divide y, then ¬Qyy is false.
∀x[(P(x) ⇔ ∀y [Qxy ⇔ False]]
∀y [Qxy ⇔ False] can be written as ∀y[¬axy]
⇒(∀x)[P(x) ⇔ ∀y[¬Qxy]]
Here, ¬Qxy says that y doesnot divides x, which is not always be true.
For example, if x=y then it is false then ∀y[¬Qxy] is not true for all values of y.
⇒(∀x)[P(x) ⇔ False]
⇒(∀x)[¬P(x) = RHS]
LHS = RHS
⇒ Irrespective of x, whether x is prime of composite number I1 and I2 satisfies α.
(∀x)[Px ⇔ (∀y)[Qxy ⇔ ¬Qyy]] ⇒(∀x)[¬Px]
Qyy is always true, because y divide y, then ¬Qyy is false.
∀x[(P(x) ⇔ ∀y [Qxy ⇔ False]]
∀y [Qxy ⇔ False] can be written as ∀y[¬axy]
⇒(∀x)[P(x) ⇔ ∀y[¬Qxy]]
Here, ¬Qxy says that y doesnot divides x, which is not always be true.
For example, if x=y then it is false then ∀y[¬Qxy] is not true for all values of y.
⇒(∀x)[P(x) ⇔ False]
⇒(∀x)[¬P(x) = RHS]
LHS = RHS
⇒ Irrespective of x, whether x is prime of composite number I1 and I2 satisfies α.
I1 satisfies α, I2 does not
I2 satisfies α, I1 does not
Neither I2 nor I1 satisfies α
Both I1 and I2 satisfy α
Subscribe
Login
0 Comments