Application-Layer-Protocol
August 30, 2024Routing
August 30, 2024Stop-and-Wait-ARQ
Question 5 |
A sender uses the Stop-and-Wait ARQ protocol for reliable transmission of frames. Frames are of size 1000 bytes and the transmission rate at the sender is 80 Kbps (1Kbps = 1000 bits/second). Size of an acknowledgement is 100 bytes and the transmission rate at the receiver is 8 Kbps. The one-way propagation delay is 100 milliseconds.
Assuming no frame is lost, the sender throughput is _________ bytes/second.
2500 | |
2501 | |
2502 | |
2503 |
Question 5 Explanation:
Given,
Frame size (L) =1000 bytes
Sender side bandwidth (BS) = 80 kbps = 10 * 103 bytes/sec
Acknowledgement size (LA) =100 bytes
Receiver side bandwidth (BR) = 8 kbps = 1 * 103 bytes/sec
Propagation delay (Tp) =100 ms
By formula:
Transmission delay (Tt ) = L/BS = 1000 bytes / 10 * 103 bytes/sec = 100 ms
Acknowledge delay (Tack ) = LA / BR = 100 bytes / 1 * 103 bytes/sec = 100 ms
Total cycle time = Tt + 2 * Tp + Tack = 100 ms + 2 * 100 ms + 100 ms = 400 ms
Efficiency (η) = Tt / Total cycle time = 100 ms / 400 ms = 1 / 4 = 0.25
Throughput = Efficiency (η) * Bandwidth (BS) = 0.25 * 10 *103 bytes/s = 2500 bytes/second
Frame size (L) =1000 bytes
Sender side bandwidth (BS) = 80 kbps = 10 * 103 bytes/sec
Acknowledgement size (LA) =100 bytes
Receiver side bandwidth (BR) = 8 kbps = 1 * 103 bytes/sec
Propagation delay (Tp) =100 ms
By formula:
Transmission delay (Tt ) = L/BS = 1000 bytes / 10 * 103 bytes/sec = 100 ms
Acknowledge delay (Tack ) = LA / BR = 100 bytes / 1 * 103 bytes/sec = 100 ms
Total cycle time = Tt + 2 * Tp + Tack = 100 ms + 2 * 100 ms + 100 ms = 400 ms
Efficiency (η) = Tt / Total cycle time = 100 ms / 400 ms = 1 / 4 = 0.25
Throughput = Efficiency (η) * Bandwidth (BS) = 0.25 * 10 *103 bytes/s = 2500 bytes/second
Correct Answer: A
Question 5 Explanation:
Given,
Frame size (L) =1000 bytes
Sender side bandwidth (BS) = 80 kbps = 10 * 103 bytes/sec
Acknowledgement size (LA) =100 bytes
Receiver side bandwidth (BR) = 8 kbps = 1 * 103 bytes/sec
Propagation delay (Tp) =100 ms
By formula:
Transmission delay (Tt ) = L/BS = 1000 bytes / 10 * 103 bytes/sec = 100 ms
Acknowledge delay (Tack ) = LA / BR = 100 bytes / 1 * 103 bytes/sec = 100 ms
Total cycle time = Tt + 2 * Tp + Tack = 100 ms + 2 * 100 ms + 100 ms = 400 ms
Efficiency (η) = Tt / Total cycle time = 100 ms / 400 ms = 1 / 4 = 0.25
Throughput = Efficiency (η) * Bandwidth (BS) = 0.25 * 10 *103 bytes/s = 2500 bytes/second
Frame size (L) =1000 bytes
Sender side bandwidth (BS) = 80 kbps = 10 * 103 bytes/sec
Acknowledgement size (LA) =100 bytes
Receiver side bandwidth (BR) = 8 kbps = 1 * 103 bytes/sec
Propagation delay (Tp) =100 ms
By formula:
Transmission delay (Tt ) = L/BS = 1000 bytes / 10 * 103 bytes/sec = 100 ms
Acknowledge delay (Tack ) = LA / BR = 100 bytes / 1 * 103 bytes/sec = 100 ms
Total cycle time = Tt + 2 * Tp + Tack = 100 ms + 2 * 100 ms + 100 ms = 400 ms
Efficiency (η) = Tt / Total cycle time = 100 ms / 400 ms = 1 / 4 = 0.25
Throughput = Efficiency (η) * Bandwidth (BS) = 0.25 * 10 *103 bytes/s = 2500 bytes/second
Subscribe
Login
0 Comments