Propositional-Logic

Question 1
Let p and q be two propositions. Consider the following two formulae in propositional logic.

Which one of the following choices is correct?
A
Both S1and S2 are tautologies.
B
Neither S1and S2 are tautology.
C
S1is not a tautology but S2is a tautology.
D
S1is a tautology but S2is not a tautology.
Question 1 Explanation: 

A tautology is a formula which is "always true" . That is, it is true for every assignment of truth values to its simple components.

Method 1:
S1: (~p ^ (p Vq)) →q
The implication is false only for T->F condition.
Let's consider q as false, then
(~p ^ (p Vq)) will be (~p ^ (p VF)) = (~p ^ (p)) =F.
It is always F->F which is true for implication. So there are no cases that return false, thus its always True i.e. its Tautology. 

 

S2: 

q->(~p (p Vq)) 


The false case for implication occurs at T->F case.
Let q=T then (~p (p Vq))  = (~p (p VT))= ~p. (It can be false for p=T).
So there is a case which yields T->F = F. Thus its not Valid or Not a Tautology.

Method 2:


Question 2

Show that proposition C is a logical consequence of the formula

     A ∧ (A →(B ∨ C)) ∧ (B → ~A)  

Using truth tables.

A
Theory Explanation.
Question 3

(a) Let * be a Boolean operation defined as
If C = A * B then evaluate and fill in the blanks:
(i) A * A = _______
(ii) C * A = _______
(b) Solve the following boolean equations for the values of A, B and C:

A
Theory Explanation.
Question 4

Obtain the principal (canonical) conjunctive normal form of the propositional formula

  (p ∧ q) V (¬q ∧ r) 

Where ‘∧’ is logical and, ‘v’ is inclusive or and ¬ is negation.

A
Theory Explanation.
Question 5

Which one of the following predicate formulae is NOT logically valid?
Note that W is a predicate formula without any free occurrence of x.

A
∃x(p(x) → W) ≡ ∀x p(x) → W
B
∀x(p(x) → W) ≡ ∀x p(x) → W
C
∃x(p(x) ∧ W) ≡ ∃x p(x) ∧ W
D
∀x(p(x) ∨ W) ≡ ∀x p(x) ∨ W
Question 5 Explanation: 
Basic Rules:
~p→q ≡ ~p∨q
Demorgan laws:
~(∀x(a(x)) ≡ ∃x~a(x)
~(∃x(a(x)) ≡ ∀x~a(x)
(A) ∃x(p(x)→w) ≡ ∀x p(x)→w
LHS: ∃x(p(x)→w) ≡ ∃x(~p(x)∨w)
≡ ∃x(~p(x))∨w
Demorgan’s law:
~(∀x(a(x)) = ∃x ~ a(x)
≡ ~(∀x P(x)) ∨ w
≡ (∀x) P(x) → w ≡ RHS
It’s valid.
(B) ∀x(P(x) → w) ≡ ∀x(~P(x) ∨ w)
≡ ∀x(~P(x)) ∨ w
≡ ~(∃x P(x)) ∨ w
≡ ∃x P(x) → w
This is not equal to RHS.
(C) ∃x(P(x) ∧ w) ≡ ∃x P(x) ∧ w
‘w’ is not a term which contains x.
So the quantifier does not have any impact on ‘w’.
Thus it can be written as
∃x(P(x)) ∧ w) ≡ ∃x P(x) ∧ w
(D) ∀(x)(P(x) ∨ w) ≡ ∀x P(x) ∨ w
‘w’ is not a term which contains ‘x’.
So the quantifier does not have an impact on ‘w’.
Thus ∀(x)(P(x) ∨ w) ≡ ∀x P(x) ∨ w
Question 6

Which of the following is false? Read ∧ as AND, ∨ as OR, ~ as NOT, → as one way implication and ↔ as two way implication.

A
((x → y) ∧ x) → y
B
((x → y) ∧ (x ∧ y)) → x
C
(x → (x ∨ ψ))
D
((x ∨ y) ↔ (x → y)
Question 6 Explanation: 
When x = F and y = F
then option (D) will be False.
Question 7

Consider the first order predicate formula φ:

    ∀x[(∀z z|x ⇒ ((z = x) ∨ (z = 1))) ⇒ ∃w (w > x) ∧ (∀z z|w ⇒ ((w = z) ∨ (z = 1)))]

Here 'a|b' denotes that 'a divides b', where a and b are integers. Consider the following sets:

    S1.  {1, 2, 3, ..., 100}
    S2.  Set of all positive integers
    S3. Set of all integers

Which of the above sets satisfy φ?

A
S1 and S3
B
S1, S2 and S3
C
S2 and S3
D
S1 and S2
Question 7 Explanation: 
The first order logic gives the meaning that if z is a prime number then there exists another prime number in the set which is larger than it.
One of the case:
If -7 is a number which is prime (either divided by -7 or 1 only). then there exists some number like -3 which is larger than -7 also satisfy the property (either divided by -3 or 1 only).
So, S3 is correct
It's true for all integers too.
Question 8

Which of the following propositions is a tautology?

A
(p ∨ q) → p
B
p ∨ (q → p)
C
p ∨ (p → q)
D
p → (p → q)
Question 8 Explanation: 
Question 9

What is the converse of the following assertion?

  I stay only if you go. 
A
I stay if you go
B
If I stay then you go
C
If you do not go then I do not stay
D
If I do not stay then you go
Question 9 Explanation: 
"I stay only you go" = "If I stay then you go"
⇒ i.e., A→B
Where A = If I stay; B = you go
Converse for (A→B) is (B→A)
⇒ If you go then I stay.
Question 10

(a) Show that the formula [(~p ∨ q) ⇒ (q ⇒ p)] is not a tautology.
(b) Let A be a tautology and B be any other formula. Prove that (A ∨ B) is a tautology.

A
Theory Explanation.
Question 11

Let a, b, c, d be propositions. Assume that the equivalence a ↔ (b ∨ -b) and b ↔ c hold. Then the truth-value of the formula (a ∧ b) → (a ∧ c) ∨ d is always

A
True
B
False
C
Same as the truth-value of b
D
Same as the truth-value of d
Question 11 Explanation: 
a ↔ (b ∨-b) and b ↔ c
Given ⇒ (a∧b) → (a∧c) ∨d
⇒ (a∧b) → (a∧c) ∨d (b⇔c)
⇒ T∨d
⇒ T
Question 12

Consider two well-formed formulas in prepositional logic

   F1: P ⇒ ¬P          F2: (P⇒¬P)∨(¬P⇒P)  

Which of the following statements is correct?

A
F1 is satisfiable, F2 is valid
B
F1 unsatisfiable, F2 is satisfiable
C
F1 is unsatisfiable, F2 is valid
D
F1 and F2 are both satisfiable
Question 12 Explanation: 

F1 is satisfiable; F2 is valid.
Question 13

“If X then Y unless Z” is represented by which of the following formulas in prepositional logic? (“¬“, is negation, “∧” is conjunction, and “→” is implication)

A
(X∧¬Z)→Y
B
(X∧Y)→¬Z
C
X→(Y∧¬Z)
D
(X→Y)∧¬Z
Question 13 Explanation: 
"If X then Y unless Z" ⇒ ¬Z → (X→Y)
⇒ Z ∨ ¬X ∨ Y
⇒ ¬X ∨ Z ∨ Y
Option A:
(X ∧ ¬Z) → Y = ¬(X ∧ ¬Z ) ∨ Y = ¬X ∨ Z ∨ Y Hence, option (A) is correct.
Question 14
Consider the first-order logic sentence
φ ≡ ∃s∃t∃u∀v∀w∀x∀y ψ(s,t,u,v,w,x,y)
where ψ(s,t,u,v,w,x,y) is a quantifier-free first-order logic formula using only predicate symbols, and possibly equality, but no function symbols. Suppose φ has a model with a universe containing 7 elements.
Which one of the following statements is necessarily true?
A
There exists at least one model of φ with universe of size less than or equal to 3.
B
There exists no model of φ with universe of size less than or equal to 3.
C
There exists no model of φ with universe of size greater than 7.
D
Every model of φ has a universe of size equal to 7.
Question 14 Explanation: 
φ = ∃s∃t∃u∀v∀w∀x∀y ψ (s,t,u,v,w,x,y)
"∃" there exists quantifier decides whether a sentence belong to the model or not.
i.e., ~∃ will make it not belong to the model. (1) We have ‘7’ elements in the universe, So max. size of universe in a model = ‘7’
(2) There are three '∃' quantifiers, which makes that a model have atleast “3” elements. So, min. size of universe in model = ‘7’.
(A) is False because: (2)
(B) is true
(C) is false because of (1)
(D) is false, because these all models with size {3 to 7} not only ‘7’.
Question 15

(a) Uses Modus ponens (A, A →|= B) or resolution to show that the following set is inconsistent:

 (1) Q(x) → P(x)V ~ R(a)
 (2) R(a) ~ Q(a)
 (3) Q(a)
 (4) ~ P(y) 

Where x and y are universally quantified variables, a is a constant and P, Q, R are monadic predicates.

(b) Let S be the set of all integers and let n > 1 be a fixed integer. Define for a, b ∈ S, a R biff a-b is a multiple of n. Show that R is an equivalence relation and finds its equivalence classes for n = 5.

A
Theory Explanation.
Question 16
Choose the correct choice(s) regarding the following propositional logic assertion S:
A
S is a contradiction.
B
The anecdote of S is logically equivalent to the consequent of S.
C
S is a tautology.
D
S is neither a tautology nor a contradiction.
Question 16 Explanation: 
Question 17

Consider the following first order logic formula in which R is a binary relation symbol.

 ∀x∀y (R(x, y)  => R(y, x)) 
The formula is

A
satisfiable and valid
B
satisfiable and so is its negation
C
unsatisfiable but its negation is valid
D
satisfiable but its negation is unsatisfiable
Question 17 Explanation: 
The given relation is known to be symmetry. We have both symmetric relations possible as well as antisymmetric but neither always holds for all sets. So they both are valid but are satisfiable.
Question 18

Which one of these first-order logic formula is valid?

A
∀x(P(x) ⇒ Q(x)) ⇒ (∀xP(x) ⇒ ∀xQ(x))
B
∃x(P(x) ∨ Q(x)) ⇒ (∃xP(x) ⇒ ∃xQ(x))
C
∃x(P(x) ∧ Q(x)) (∃xP(x) ∧ ∃xQ(x))
D
∀x∃y P(x, y) ⇒ ∃y∀x P(x, y)
Question 18 Explanation: 
LHS = for every x, if P holds then Q holds
RHS = if P(x) holds for all x, then Q(x) holds for all x
LHS ⇒ RHS (✔)
RHS ⇒ LHS (️×)
Question 19

Which of the following first order formula is logically valid? Here α(x) is a first order formula with x as a free variable, and β is a first order formula with no free variable.

A
[β→(∃x,α(x))]→[∀x,β→α(x)]
B
[∃x,β→α(x)]→[β→(∀x,α(x))]
C
[(∃x,α(x))→β]→[∀x,α(x)→β]
D
[(∀x,α(x))→β]→[∀x,α(x)→β]
Question 19 Explanation: 
[(∃x,α(x))→β]→[∀x,α(x)→β]
L.H.S. : If there is an x such that α(x) is true, then β is true.
R.H.S. : For all x, if α(x) true, then β is true.
Here, the given LHS and RHS are to be same as β is a formula which can be independent of x (if β is true for one x, it is true for every x, and vice-versa).
Here, LHS = RHS
So, Option C is valid.
Question 20

Which of the following is the negation of [∀x, α →(∃y, β →(∀ u, ∃v, y))]

A
[∃x, α → (∀y, β → (∃u, ∀v, y))]
B
[∃x, α → (∀y, β → (∃u, ∀ v, ¬y))]
C
[∀x, ¬α → (∃y, ¬β → (∀u, ∃v, ¬y))]
D
[∃x, α ʌ (∀y, β ʌ (∃u, ∀v, ¬y))]
Question 20 Explanation: 
~[∀x, α → (∃y, β → (∀u, ∃v, y))]
⇔ [∃x, [α × ~(∃y, β → (∀u, ∃v, y))]
⇔ [∃x, [α × ∀y, ~(β → (∀u, ∃v, y)]
⇔ [∃x, [α × ∀y, ~(β × ~(∀u, ∃v, y)]
⇔ [∃x, [α × ∀y(β × (∃u, ∀v, y)]
Question 21

Which of the following well-formed formulas are equivalent?

A
P → Q
B
¬Q → ¬P
C
¬P ∨ Q
D
¬Q → P
E
A, B and C.
Question 21 Explanation: 
P → Q ⇔ ¬P ∨ Q
¬Q → ¬P ⇔ Q ∨ ¬P
¬P ∨ Q ⇔ ¬P ∨ Q
¬Q → P ⇔ Q ∨ P
A, B and C are equivalent.
Question 22

Choose the correct alternatives (More than one may be correct). Indicate which of the following well-formed formulae are valid:

A
(P⇒Q) ∧ (Q⇒R) ⇒ (P⇒R)
B
(P⇒Q) ⇒ (¬P⇒¬Q)
C
(P∧(¬P∨¬Q)) ⇒ Q
D
(P⇒R) ∨ (Q⇒R) ⇒ ((P∨Q)⇒R)
Question 22 Explanation: 
To prove any well formed formula valid or tautology try to use this analogy.
Since implication A → B is False only when A = T and B = F. So to prove any implication is valid or not try to get
TRUE → FALSE, if we succeed then it is not valid, if we not then well formed formula is valid.
So, for option (A),
Substitute P=T and R=F
RHS:
P→R becomes False.
LHS:
(P→Q) ∧ (P→R)
To get true here we need T∧T. So substitute Q=T which makes P→Q TRUE and P→R FALSE.
So, T∧F = F which makes LHS = False.
Hence, we are unable to get T→F which proves well formed formula given in option (A) is valid.
Similarly, try for (B), (C), (D). We get T → F in these options which says these well formed formula is invalid.
Question 23

The following resolution rule is used in logic programming.

Derive clause (P ∨ Q) from clauses (P ∨ R), (Q ∨ ¬R) 

Which of the following statements related to this rule is FALSE?

A
((P ∨ R) ∧ (Q ∨ ¬R)) ⇒ (P ∨ Q) is logically valid
B
(P ∨ Q) ⇒ ((P ∨ R) ∧ (Q ∨ ¬R)) is logically valid
C
(P ∨ Q) is satisfiable if and only if (P∨R) ∧ (Q∨¬R) is satisfiable
D
(P ∨ Q) ⇒ FALSE if and only if both P and Q are unsatisfiable
Question 23 Explanation: 
(P ∨ Q) ⇒ ((P ∨ R) ∧ (Q ∨ ¬R))

It is may be True (or) False depending on values. So this is not valid.
Question 24

Consider the following formula a and its two interpretations I1 and I2

α: (∀x)[Px ⇔ (∀y)[Qxy ⇔ ¬Qyy]] ⇒ (∀x)[¬Px]
I1: Domain: the set of natural numbers
    Px ≡ 'x is a prime number'
    Qxy ≡ 'y divides x'
I2: same as I1 except that Px = 'x is a composite number'.

Which of the following statements is true?

A
I1 satisfies α, I2 does not
B
I2 satisfies α, I1 does not
C
Neither I2 nor I1 satisfies α
D
Both I1 and I2 satisfy α
Question 24 Explanation: 
Given that:
(∀x)[Px ⇔ (∀y)[Qxy ⇔ ¬Qyy]] ⇒(∀x)[¬Px]
Qyy is always true, because y divide y, then ¬Qyy is false.
∀x[(P(x) ⇔ ∀y [Qxy ⇔ False]]
∀y [Qxy ⇔ False] can be written as ∀y[¬axy]
⇒(∀x)[P(x) ⇔ ∀y[¬Qxy]]
Here, ¬Qxy says that y doesnot divides x, which is not always be true.
For example, if x=y then it is false then ∀y[¬Qxy] is not true for all values of y.
⇒(∀x)[P(x) ⇔ False]
⇒(∀x)[¬P(x) = RHS]
LHS = RHS
⇒ Irrespective of x, whether x is prime of composite number I1 and I2 satisfies α.
Question 25

Which of the following is a valid first order formula? (Here α and β are first order formulae with x as their only free variable)

A
((∀x)[α] ⇒ (∀x)[β]) ⇒ (∀x)[α⇒β]
B
(∀x)[α] ⇒ (∃x)[α ∧ β]
C
((∀x)[α ∨ β] ⇒ (∃x)[α] ⇒ (∀x)[α]
D
(∀x)[α ⇒ β] ⇒ ((∀x)[α] ⇒ (∀x)[β])
Question 25 Explanation: 
Option D is valid.
Here, α, β are holding values of x. Then and RHS saying that α holding the value of x and β is holding value of x.
Then LHS ⇒ RHS.
Question 26

The following propositional statement is (P → (Q v R)) → ((P v Q) → R)

A
satisfiable but not valid
B
valid
C
a contradiction
D
None of the above
Question 26 Explanation: 
(P→(Q∨R)) → ((P∨Q)→R)
If P=T; Q=T; R=T
(P→(T∨T)) → ((T∨T)→R)
(P→T) → (T→R)
(T→T) → (T→T)
T→T
T(Satisfiable)
Question 27

Identify the correct translation into logical notation of the following assertion.

      "Some boys in the class are taller than all the girls"  

Note: taller(x,y) is true if x is taller than y.

A
(∃x) (boy(x) → (∀y) (girl(y) ∧ taller(x,y)))
B
(∃x) (boy(x) ∧ (∀y) (girl(y) ∧ taller(x,y)))
C
(∃x) (boy(x) → (∀y) (girl(y) → taller(x,y)))
D
(∃x) (boy(x) ∧ (∀y) (girl(y) → taller(x,y)))
Question 27 Explanation: 
Don't confuse with '∧' and '→'
'∧' → predicts statements are always true, no matter the value of x.
'→' → predicts there is no need of left predicate to be true always, but whenever it becomes true, then right predicate must be true.
Option D:
There exists a some boys who are taller than of all girls y.
Question 28
Geetha has a conjecture about integers, which is of the form ∀x P(x) → ∃yQ(x, y) , where P is a statement about integers, and Q is a statement about pairs of integers. Which of the following (one or more) option(s) would imply Geetha’s conjecture?
A
∃x P(x) ∧ ∀yQ(x, y)
B
∀x∀yQ(x, y)
C
∃y∀x P(x) ⇒ Q(x, y)
D
∃x P(x) ∧ ∃yQ(x, y)
Question 29
Let # be a binary operator defined as X # Y = X′ + Y′ where X and Y are Boolean variables. Consider the following two statements.
S1: (P # Q) # R = P # (Q # R)
S2: Q # R = R # Q
Which of the following is/are true for the Boolean variables P, Q and R?
A
Only S1 is True
B
Only S2 is True
C
Both S1 and S2 are True
D
Neither S1 nor S2 are True
Question 30

Which one of the following well formed formulae is a tautology?

A
∀x ∃y R(x,y) ↔ ∃y ∀x R(x,y)
B
(∀x [∃y R(x,y) → S(x,y)]) → ∀x∃y S(x,y)
C
[∀x ∃y (P(x,y) → R(x,y)] ↔ [∀x ∃y (¬ P(x,y)∨R(x,y)]
D
∀x ∀y P(x,y) → ∀x ∀y P(y,x)
Question 30 Explanation: 
Since P→R = ¬P∨R
[∀x ∃y (P(x,y) → R(x,y)] ↔ [∀x ∃y (¬ P(x,y)∨R(x,y)] is a tautology.
Question 31
Which one of the following is not equivalent to p←→q
A
A
B
B
C
C
D
D
Question 32

Which one of the following well-formed formulae in predicate calculus is NOT valid?

A
(∀x p(x) ⇒ ∀x q(x)) ⇒ (∃x ¬p(x) ∨ ∀x q(x))
B
(∃x p(x) ∨ ∃x q(x)) ⇒ ∃x (p(x) ∨ q(x))
C
∃x (p(x) ∧ q(x)) ⇒ (∃x p(x) ∧ ∃x q(x))
D
∀x (p(x) ∨ q(x)) ⇒ (∀x p(x) ∨ ∀x q(x))
Question 32 Explanation: 
For the formulae to be valid there should not be implication like T → F.
But in option (D), we can generate T → F.
Hence, not valid.
Question 33
Consider the following expressions:
(i) false
(ii) Q
(iii) true
(iv) P ∨ Q
(v) ¬Q ∨ P
The number of expressions given above that are logically implied by P ∧ (P ⇒ Q) is _________.
A
4
B
5
C
6
D
7
Question 33 Explanation: 
The expression is logically implied by P ∧ (P → Q) means
(P ∧ (P → Q))→ expression is a tautology. So we have to find
How many tautological formulas are there for the given inputs.
(P ∧ (P → Q)) → True is always tautology
(P ∧ (P → Q)) → False is not a tautology
(P ∧ (P → Q)) → Q is a tautology
(P ∧ (P → Q)) → ¬Q ∨ P is a tautology
(P ∧ (P → Q)) → P ∨ Q is a tautology
So there are 4 expressions logically implied by (P ∧ (P → Q))
Question 34
The statement (¬p) ⇒ (¬q) is logically equivalent to which of the statements below?
I. p ⇒ q
II. q ⇒ p
III. (¬q) ∨ p
IV. (¬p) ∨ q
A
I only
B
I and IV only
C
II only
D
II and III only
Question 34 Explanation: 
Method 1:
Construct Truth tables:
~p ⇒ ~q


II, III are equivalent to (~p) ⇒ (~q)
Method 2:
(I) p⇒q ≡ ~p∨q
(II) q⇒p ≡ ~q∨p
(III) (~q) ∨ p ≡ ~q∨p
(IV) (~p) ∨ p ≡ ~p∨q
Also, from question:
(~p) ⇒ (~q)
≡ p∨~q
So, (II) & (III) are equivalent to the statement given in question.
Question 35

Let Graph(x) be a predicate which denotes that x is a graph. Let Connected(x) be a predicate which denotes that x is connected. Which of the following first order logic sentences DOES NOT represent the statement: “Not every graph is connected”?

A
¬∀x (Graph (x) ⇒ Connected (x))
B
¬∃x (Graph (x) ∧ ¬Connected (x))
C
¬∀x (¬Graph (x) ∨ Connected (x))
D
∀x (Graph (x) ⇒ ¬Connected (x))
Question 35 Explanation: 
Option (A) and (C) are same, because in option (C) the given expression is
Given expression is
¬∀x(¬Graph(x) ∨ Connected(x)
which can be rewritten as,
¬∀x(Graph(x) ⇒ Connected(x)
which is equivalent to option (A)
(∵ ¬p∨q ≡ p→q)
So, option (A) and (C) cannot be the answer.
Coming to option (B), the given expression is,
∃x (Graph (x) ∧ ¬Connected (x))
"There exist some graph which is not connected", which is equivalent in saying that "Not every graph is connected".
Coming to option (D),
For all x graph is not connected, which is not correct.
Hence, option (D) is the answer.
Question 36

P and Q are two propositions. Which of the following logical expressions are equivalent?

    I. P∨∼Q
    II. ∼(∼P∧Q)
    III. (P∧Q)∨(P∧∼Q)∨(∼P∧∼Q)
    IV. (P∧Q)∨(P∧∼Q)∨(∼P∧Q)
A
Only I and II
B
Only I, II and III
C
Only I, II and IV
D
All of I, II, III and IV
Question 36 Explanation: 
I. P∨∼Q (✔️)
II. ∼(∼P∧Q)⇒(P∨∼Q)≡I (✔️)
III. (P×Q)∨(P×∼Q)∨(∼P×∼Q)
P∧(Q∨∼Q)∨(∼P∧∼Q)
P∨(∼P×∼Q)
(P∨∼P)×(P∨∼Q)
(P∨∼Q)≡I=II (✔️)
IV. (P×Q)∨(P∧∼Q)∨(∼P×Q)
P×(Q∨∼Q)∨(∼P∧Q)
P∨(∼P×Q)
(P∨∼P)×(P∨Q)
(P∨Q)≠I (❌)
So I≡II≡III (✔️)
Question 37

Let fsa and pda be two predicates such that fsa(x) means x is a finite state automaton, and pda(y) means that y is a pushdown automaton. Let equivalent be another predicate such that equivalent (a, b) means a and b are equivalent. Which of the following first order logic statements represents the following:

Each finite state automaton has an equivalent pushdown automaton

A
(∀x fsa(x)) ⇒ (∃y pda(y) ∧ equivalent(x,y))
B
∼∀y(∃x fsa(x) ⇒ pda(y) ∧ equivalent(x,y))
C
∀x ∃y(fsa(x) ∧ pda(y) ∧ equivalent(x,y))
D
∀x ∃y(fsa(y)∧ pda(x) ∧ equivalent(x,y))
Question 37 Explanation: 
Go through the options.
Option A:
If everything is a FSA. Then there exists an equivalent PDA for everything.
Option B:
Not for the case Y, if there exists a FSA then it can have equivalent PDA.
Option C:
Everything is a PDA and consists equivalent PDA.
Option D:
Everything is a PDA and has exist an equivalent FSA. In option A we are getting the equivalent of a and b.
So answer is option A.
Question 38

Suppose the predicate F(x, y, t) is used to represent the statement that person x can fool person y at time t. Which one of the statements below expresses best the meaning of the formula ∀x∃y∃t(¬F(x,y,t))?

A
Everyone can fool some person at some time
B
No one can fool everyone all the time
C
Everyone cannot fool some person all the time
D
No one can fool some person at some time
Question 38 Explanation: 
F(x,y,t) ⇒ Person 'x' can fool person 'y' at time 't'.
For better understanding propagate negation sign outward by applying Demorgan's law.
∀x∃y∃t(¬F(x, y, t)) ≡ ¬∃x∀y∀t(F(x,y,t))
Now converting ¬∃x∀y∀t(F(x,y,t)) to English is simple.
¬∃x∀y∀t(F(x,y,t)) ⇒ There does not exist a person who can fool everyone all the time.
Which means "No one can fool everyone all the time".
Hence, Option (B) is correct.
Question 39

Which one of the following options is CORRECT given three positive integers x,y and z, and a predicate

P(x) = ¬(x=1)∧∀y(∃z(x=y*z) ⇒ (y=x)∨(y=1))
A
P(x) being true means that x is a prime number
B
P(x) being true means that x is a number other than 1
C
P(x) is always true irrespective of the value of x
D
P(x) being true means that x has exactly two factors other than 1 and x
Question 39 Explanation: 
Statement: x is not equal to 1 and if there exists some z for all y such that product of y and z is x, then y is either the number itself or 1.
This is the definition of prime numbers.
Question 40

What is the correct translation of the following statement into mathematical logic?

“Some real numbers are rational”

A
∃x (real(x) ∨ rational(x))
B
∀x (real(x) → rational(x))
C
∃x (real(x) ∧ rational(x))
D
∃x (rational(x) → real(x))
Question 40 Explanation: 

∃x (real(x) ∧ rational(x))
(A) ∃x(real(x) ∨ rational(x))
means There exists some number, which are either real or rational.
(B) ∀x (real(x)→rational(x))
If a number is real then it is rational.
(D) ∃x (rational(x)→real(x))
There exists a number such that if it is rational then it is real.
There are 40 questions to complete.

Access quiz wise question and answers by becoming as a solutions adda PRO SUBSCRIBER with Ad-Free content

Register Now

If you have registered and made your payment please contact solutionsadda.in@gmail.com to get access