DigitalLogicDesign
October 15, 2023MathematicalReasoning
October 15, 2023BinaryTrees
Question 46

Let T be a full binary tree with 8 leaves. (A full binary tree has every level full). Suppose two leaves a and b of T are chosen uniformly and independently at random. The expected value of the distance between a and b in T (i.e., the number of edges in the unique path between a and b) is (rounded off to 2 decimal places) _____.
5.54


1.34


4.25


3.82

Question 46 Explanation:
There can be 8 paths between any 2 uniformly & independently chosen leaf nodes.
A node can be chosen twice and the path from that node to itself will be zero.
∴ Path 1 = 0
Similarly,
Path 2 = 2
Path 3 = 4
Path 4 = 4
Path 5 = 6
Path 6 = 6
Path 7 = 6
Path 8 = 6
∴ Expected value = Σ Path length × Probability of selecting path
= 2×1/8 + 4×2/8 + 6×4/8 + 0×1/8
= 1/4 + 1/1 + 3/1 + 0
= 4 + 1/4
= 17/4
= 4.25
A node can be chosen twice and the path from that node to itself will be zero.
∴ Path 1 = 0
Similarly,
Path 2 = 2
Path 3 = 4
Path 4 = 4
Path 5 = 6
Path 6 = 6
Path 7 = 6
Path 8 = 6
∴ Expected value = Σ Path length × Probability of selecting path
= 2×1/8 + 4×2/8 + 6×4/8 + 0×1/8
= 1/4 + 1/1 + 3/1 + 0
= 4 + 1/4
= 17/4
= 4.25
Correct Answer: C
Question 46 Explanation:
There can be 8 paths between any 2 uniformly & independently chosen leaf nodes.
A node can be chosen twice and the path from that node to itself will be zero.
∴ Path 1 = 0
Similarly,
Path 2 = 2
Path 3 = 4
Path 4 = 4
Path 5 = 6
Path 6 = 6
Path 7 = 6
Path 8 = 6
∴ Expected value = Σ Path length × Probability of selecting path
= 2×1/8 + 4×2/8 + 6×4/8 + 0×1/8
= 1/4 + 1/1 + 3/1 + 0
= 4 + 1/4
= 17/4
= 4.25
A node can be chosen twice and the path from that node to itself will be zero.
∴ Path 1 = 0
Similarly,
Path 2 = 2
Path 3 = 4
Path 4 = 4
Path 5 = 6
Path 6 = 6
Path 7 = 6
Path 8 = 6
∴ Expected value = Σ Path length × Probability of selecting path
= 2×1/8 + 4×2/8 + 6×4/8 + 0×1/8
= 1/4 + 1/1 + 3/1 + 0
= 4 + 1/4
= 17/4
= 4.25
Subscribe
Login
0 Comments