October 18, 2023
October 18, 2023
October 18, 2023
###### OOPS
October 18, 2023
 Question 29

Suppose that the maximum transmit window size for a TCP connection is 12000 bytes. Each packet consists of 2000 bytes. At some point of time, the connection is in slow-start phase with a current transmit window of 4000 bytes. Subsequently, the transmitter receives two acknowledgements. Assume that no packets are lost and there are no time-outs. What is the maximum possible value of the current transmit window?

 A 4000 bytes B 8000 bytes C 10000 bytes D 12000 bytes
Question 29 Explanation:
Since maximum transmit window size = 12000 B
and packet size =2000 B (or MSS)
Receiver window size = 6 MSS and
Current sender window size = 2 MSS
Slow start threshold = receiver window/2 = 3 MSS
Now current sender window size = 2 MSS <3 MSS,
which implies transmission is in slow start phase.
After receiving first Ack: Current sender window should increase exponentially to 4 MSS but since threshold = 3 MSS, current sender window size goes to threshold which is 3 MSS, then after receiving second Ack: Since now it is in congestion avoidance phase, sender window size increases linearly which makes current sender window

= 4 MSS
= 4 × 2000 B
= 8000 B
Question 29 Explanation:
Since maximum transmit window size = 12000 B
and packet size =2000 B (or MSS)
Receiver window size = 6 MSS and
Current sender window size = 2 MSS
Slow start threshold = receiver window/2 = 3 MSS
Now current sender window size = 2 MSS <3 MSS,
which implies transmission is in slow start phase.
After receiving first Ack: Current sender window should increase exponentially to 4 MSS but since threshold = 3 MSS, current sender window size goes to threshold which is 3 MSS, then after receiving second Ack: Since now it is in congestion avoidance phase, sender window size increases linearly which makes current sender window

= 4 MSS
= 4 × 2000 B
= 8000 B