APPSC-2012-DL-CS
January 22, 2024Digital-Logic-Design
January 23, 2024GATE 2012
Question 1 |
Consider the following logical inferences.
- I1: If it rains then the cricket match will not be played.
The cricket match was played.
Inference: There was no rain.
I2: If it rains then the cricket match will not be played.
It did not rain.
Inference: The cricket match was played.
Which of the following is TRUE?
Both I1 and I2 are correct inferences | |
I1 is correct but I2 is not a correct inference | |
I1 is not correct but I2 is a correct inference | |
Both I1 and I2 are not correct inferences |
Question 1 Explanation:
I1: If it rains then the cricket match will not be played.
The cricket match was played.
Let p = it rains
q = playing cricket/ match played
If (it rains) then (the match will not be played)
p ⇒ (∼q)
Inference: There was no rain. (i.e., p = F)
So for any F ⇒ (∼q) is true.
So this inference is valid.
I2: If it rains then the cricket match will not be played.
It did not rain.
p ⇒ (∼q)
Inference: The cricket match was played.
q = T
p ⇒ (∼q)
p ⇒ (∼T)
p ⇒ F
This is false for p = T, so this is not true.
The cricket match was played.
Let p = it rains
q = playing cricket/ match played
If (it rains) then (the match will not be played)
p ⇒ (∼q)
Inference: There was no rain. (i.e., p = F)
So for any F ⇒ (∼q) is true.
So this inference is valid.
I2: If it rains then the cricket match will not be played.
It did not rain.
p ⇒ (∼q)
Inference: The cricket match was played.
q = T
p ⇒ (∼q)
p ⇒ (∼T)
p ⇒ F
This is false for p = T, so this is not true.
Correct Answer: B
Question 1 Explanation:
I1: If it rains then the cricket match will not be played.
The cricket match was played.
Let p = it rains
q = playing cricket/ match played
If (it rains) then (the match will not be played)
p ⇒ (∼q)
Inference: There was no rain. (i.e., p = F)
So for any F ⇒ (∼q) is true.
So this inference is valid.
I2: If it rains then the cricket match will not be played.
It did not rain.
p ⇒ (∼q)
Inference: The cricket match was played.
q = T
p ⇒ (∼q)
p ⇒ (∼T)
p ⇒ F
This is false for p = T, so this is not true.
The cricket match was played.
Let p = it rains
q = playing cricket/ match played
If (it rains) then (the match will not be played)
p ⇒ (∼q)
Inference: There was no rain. (i.e., p = F)
So for any F ⇒ (∼q) is true.
So this inference is valid.
I2: If it rains then the cricket match will not be played.
It did not rain.
p ⇒ (∼q)
Inference: The cricket match was played.
q = T
p ⇒ (∼q)
p ⇒ (∼T)
p ⇒ F
This is false for p = T, so this is not true.