...
Algorithms
February 13, 2024
Algorithms
February 13, 2024
Algorithms
February 13, 2024
Algorithms
February 13, 2024

GATE 1993

Question 36

Consider a simple connected graph G with n vertices and n-edges (n>2). Then, which of the following statements are true?

A
G has no cycles.
B
The graph obtained by removing any edge from G is not connected.
C
G has at least one cycle.
D
The graph obtained by removing any two edges from G is not connected.
E
Both C and D.
Question 36 Explanation: 
If a graph have n vertices and n edges (n>2) then it is to be cyclic graph. Then it have atleast one cycle and if we remove two edges then it is not connected.
For example let us consider, n=3.
Correct Answer: E
Question 36 Explanation: 
If a graph have n vertices and n edges (n>2) then it is to be cyclic graph. Then it have atleast one cycle and if we remove two edges then it is not connected.
For example let us consider, n=3.

Leave a Reply

Your email address will not be published. Required fields are marked *