Artificial-Intelligence
April 14, 2024Question 1496 – Artificial-intelligence
April 14, 2024Artificial-Intelligence
Question 50 |
Sigmoidal feedforward artificial neural networks with one hidden layer can / are ___
Approximation any continuous function | |
Approximation any disContinuous function | |
Approximation any continuous function and its derivatives of arbitrary order. | |
Exact modeling technique |
Question 50 Explanation:
Multilayer perceptron class of networks consists of multiple layers of computational units, usually interconnected in a feed-forward way. Each neuron in one layer has directed connections to the neurons of the subsequent layer. In many applications the units of these networks apply a sigmoid function as an activation function.
A feedforward neural network is an artificial neural network wherein connections between the nodes do not form a cycle. As such, it is different from recurrent neural networks. The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network.
A feedforward neural network is an artificial neural network wherein connections between the nodes do not form a cycle. As such, it is different from recurrent neural networks. The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network.
Correct Answer: A
Question 50 Explanation:
Multilayer perceptron class of networks consists of multiple layers of computational units, usually interconnected in a feed-forward way. Each neuron in one layer has directed connections to the neurons of the subsequent layer. In many applications the units of these networks apply a sigmoid function as an activation function.
A feedforward neural network is an artificial neural network wherein connections between the nodes do not form a cycle. As such, it is different from recurrent neural networks. The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network.
A feedforward neural network is an artificial neural network wherein connections between the nodes do not form a cycle. As such, it is different from recurrent neural networks. The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network.