Question 8003 – Theory-of-Computation
Let L(R) be the language represented by regular expression R. Let L(G) be the language generated by a context free grammar G. Let L(M) be the language accepted by a Turing machine M.
Which of the following decision problems are undecidable?
I. Given a regular expression R and a string w, is w ∈ L(R)?
II. Given a context-free grammar G, is L(G) = ∅?
III. Given a context-free grammar G, is L(G) = Σ* for some alphabet Σ?
IV. Given a Turing machine M and a string w, is w ∈ L(M)?
Correct Answer: D
Question 31 Explanation:
Since membership problem for regular language is decidable, so I is decidable.
Emptiness problem for Context free language is decidable, so II is decidable.
Completeness problem (i.e. L(G) = Σ* for a CFG G) is undecidable.
Membership problem for recursive enumerable language (as language of Turing Machine is recursive enumerable) is undecidable.
So IV is undecidable.
Emptiness problem for Context free language is decidable, so II is decidable.
Completeness problem (i.e. L(G) = Σ* for a CFG G) is undecidable.
Membership problem for recursive enumerable language (as language of Turing Machine is recursive enumerable) is undecidable.
So IV is undecidable.
I and IV only
II and III only
II, III and IV only
III and IV only