Computer-Networks
September 17, 2024NTA UGC NET Dec 2023 Paper-2
September 18, 2024UGC NET CS 2013 Sep-paper-2
|
Question 3
|
Which of the following substitution technique have the relationship between a character in the plain text and a character in the ciphertext as one-to-many ?
|
Monoalphabetic
|
|
|
Polyalphabetic
|
|
|
Transpositional
|
|
|
None of the above
|
Question 3 Explanation:
Monoalphabetic Substitution: The relationship between a character in the plaintext and a character in the ciphertext is always one-to-one
Polyalphabetic Substitution: This is an improvement over the Caesar cipher. In polyalphabetic substitution, each occurrence of a character may have a different substitute. Here the relationship between a character in the plaintext and a character in the ciphertext is always one-to-many.
Transposition Cipher: The transposition cipher, the characters remain unchanged but their positions are changed to create the ciphertext. A transposition cipher does not substitute one symbol for another, instead it changes the location of the symbols. A transposition cipher reorders symbols.
Polyalphabetic Substitution: This is an improvement over the Caesar cipher. In polyalphabetic substitution, each occurrence of a character may have a different substitute. Here the relationship between a character in the plaintext and a character in the ciphertext is always one-to-many.
Transposition Cipher: The transposition cipher, the characters remain unchanged but their positions are changed to create the ciphertext. A transposition cipher does not substitute one symbol for another, instead it changes the location of the symbols. A transposition cipher reorders symbols.
Correct Answer: B
Question 3 Explanation:
Monoalphabetic Substitution: The relationship between a character in the plaintext and a character in the ciphertext is always one-to-one
Polyalphabetic Substitution: This is an improvement over the Caesar cipher. In polyalphabetic substitution, each occurrence of a character may have a different substitute. Here the relationship between a character in the plaintext and a character in the ciphertext is always one-to-many.
Transposition Cipher: The transposition cipher, the characters remain unchanged but their positions are changed to create the ciphertext. A transposition cipher does not substitute one symbol for another, instead it changes the location of the symbols. A transposition cipher reorders symbols.
Polyalphabetic Substitution: This is an improvement over the Caesar cipher. In polyalphabetic substitution, each occurrence of a character may have a different substitute. Here the relationship between a character in the plaintext and a character in the ciphertext is always one-to-many.
Transposition Cipher: The transposition cipher, the characters remain unchanged but their positions are changed to create the ciphertext. A transposition cipher does not substitute one symbol for another, instead it changes the location of the symbols. A transposition cipher reorders symbols.
