GATE 2005
March 12, 2025GATE 2005
March 12, 2025GATE 2005
Question 40
|
Let P, Q and R be three atomic prepositional assertions. Let X denote (P ∨ Q) → R and Y denote (P → R) ∨ (Q → R). Which one of the following is a tautology?
X ≡ Y
|
|
X → Y
|
|
Y → X
|
|
¬Y → X
|
Question 40 Explanation:
X: (P∨Q) → R
⇒ ∼(P∨Q) ∨ R
⇒ (∼P∧∼Q) ∨ R
⇒ (∼P∨R) × (∼Q∨R)
⇒ (P→R) ∧ (Q→R)
Option B: X→Y
[(P→R) × (Q→R)] → [(P→R) ∨ (Q→R)]
∼[(P→R) × (Q→R) ∨ (P→R) ∨ (Q→R)]
[∼(P→R) ∨ ∼(Q→R)] ∨ [(P→R) ∨ (Q→R)]
[∼(P→R) ∨ (P→R)] ∨ [∼(P→R) ∨ (Q→R)] ∨ [(Q→R) ∨ (P→R)] ∨ [∼(Q→R) ∨ (Q→R)]
T ∨ [∼(P→R) ∨ (Q→R)] ∨ [(Q→R) ∨ (P→R)] V T
T (✔️)
⇒ ∼(P∨Q) ∨ R
⇒ (∼P∧∼Q) ∨ R
⇒ (∼P∨R) × (∼Q∨R)
⇒ (P→R) ∧ (Q→R)
Option B: X→Y
[(P→R) × (Q→R)] → [(P→R) ∨ (Q→R)]
∼[(P→R) × (Q→R) ∨ (P→R) ∨ (Q→R)]
[∼(P→R) ∨ ∼(Q→R)] ∨ [(P→R) ∨ (Q→R)]
[∼(P→R) ∨ (P→R)] ∨ [∼(P→R) ∨ (Q→R)] ∨ [(Q→R) ∨ (P→R)] ∨ [∼(Q→R) ∨ (Q→R)]
T ∨ [∼(P→R) ∨ (Q→R)] ∨ [(Q→R) ∨ (P→R)] V T
T (✔️)
Correct Answer: B
Question 40 Explanation:
X: (P∨Q) → R
⇒ ∼(P∨Q) ∨ R
⇒ (∼P∧∼Q) ∨ R
⇒ (∼P∨R) × (∼Q∨R)
⇒ (P→R) ∧ (Q→R)
Option B: X→Y
[(P→R) × (Q→R)] → [(P→R) ∨ (Q→R)]
∼[(P→R) × (Q→R) ∨ (P→R) ∨ (Q→R)]
[∼(P→R) ∨ ∼(Q→R)] ∨ [(P→R) ∨ (Q→R)]
[∼(P→R) ∨ (P→R)] ∨ [∼(P→R) ∨ (Q→R)] ∨ [(Q→R) ∨ (P→R)] ∨ [∼(Q→R) ∨ (Q→R)]
T ∨ [∼(P→R) ∨ (Q→R)] ∨ [(Q→R) ∨ (P→R)] V T
T (✔️)
⇒ ∼(P∨Q) ∨ R
⇒ (∼P∧∼Q) ∨ R
⇒ (∼P∨R) × (∼Q∨R)
⇒ (P→R) ∧ (Q→R)
Option B: X→Y
[(P→R) × (Q→R)] → [(P→R) ∨ (Q→R)]
∼[(P→R) × (Q→R) ∨ (P→R) ∨ (Q→R)]
[∼(P→R) ∨ ∼(Q→R)] ∨ [(P→R) ∨ (Q→R)]
[∼(P→R) ∨ (P→R)] ∨ [∼(P→R) ∨ (Q→R)] ∨ [(Q→R) ∨ (P→R)] ∨ [∼(Q→R) ∨ (Q→R)]
T ∨ [∼(P→R) ∨ (Q→R)] ∨ [(Q→R) ∨ (P→R)] V T
T (✔️)