...
GATE 2015 [Set-2]
April 4, 2025
GATE 2015 [Set-2]
April 4, 2025
GATE 2015 [Set-2]
April 4, 2025
GATE 2015 [Set-2]
April 4, 2025

GATE 2015 [Set-2]

Question 12

Let R be the relation on the set of positive integers such that aRb if and only if a and b are distinct and have a common divisor other than 1. Which one of the following statements about R is true?

A
R is symmetric and reflexive but not transitive
B
R is reflexive but not symmetric and not transitive
C
R is transitive but not reflexive and not symmetric
D
R is symmetric but not reflexive and not transitive
Question 12 Explanation: 
Reflexive:
In aRb, ‘a’ and ‘b’ are distinct. So it can never be reflexive.
Symmetric:
In aRb, if ‘a’ and ‘b’ have common divisor other than 1, then bRa, i.e., ‘b’ and ‘a’ also will have common divisor other than 1. So, yes symmetric.
Transitive:
Take (3, 6) and (6, 2) elements of R. For transitivity (3, 2) must be the element of R, but 3 and 2 don’t have a common divisor. So not transitive.
Correct Answer: D
Question 12 Explanation: 
Reflexive:
In aRb, ‘a’ and ‘b’ are distinct. So it can never be reflexive.
Symmetric:
In aRb, if ‘a’ and ‘b’ have common divisor other than 1, then bRa, i.e., ‘b’ and ‘a’ also will have common divisor other than 1. So, yes symmetric.
Transitive:
Take (3, 6) and (6, 2) elements of R. For transitivity (3, 2) must be the element of R, but 3 and 2 don’t have a common divisor. So not transitive.

Leave a Reply

Your email address will not be published. Required fields are marked *