Theory-of-Computation
October 12, 2023GATE 2023
October 12, 2023Theory-of-Computation
Question 3 |
Consider the following sets:
- S1. Set of all recursively enumerable languages over the alphabet {0,1}
S2. Set of all syntactically valid C programs
S3. Set of all languages over the alphabet {0,1}
S4. Set of all non-regular languages over the alphabet {0,1}
Which of the above sets are uncountable?
S2 and S3 | |
S3 and S4 | |
S1 and S4 | |
S1 and S2 |
Question 3 Explanation:
S1 is countable, set of all recursively enumerable languages means set of all Turing machines and we can enumerate TM and have one to one correspondence between natural number.
S2 is countable, since a valid C program represents a valid algorithm and every algorithm corresponds to a Turing Machine, so S2 is equivalent to set of all Turing Machines.
S3 is is uncountable, it is proved by diagonalization method.
S4 is uncountable, as set of non-regular languages will have languages which is set of all languages over alphabet {0,1} i.e., S3.
S2 is countable, since a valid C program represents a valid algorithm and every algorithm corresponds to a Turing Machine, so S2 is equivalent to set of all Turing Machines.
S3 is is uncountable, it is proved by diagonalization method.
S4 is uncountable, as set of non-regular languages will have languages which is set of all languages over alphabet {0,1} i.e., S3.
Correct Answer: B
Question 3 Explanation:
S1 is countable, set of all recursively enumerable languages means set of all Turing machines and we can enumerate TM and have one to one correspondence between natural number.
S2 is countable, since a valid C program represents a valid algorithm and every algorithm corresponds to a Turing Machine, so S2 is equivalent to set of all Turing Machines.
S3 is is uncountable, it is proved by diagonalization method.
S4 is uncountable, as set of non-regular languages will have languages which is set of all languages over alphabet {0,1} i.e., S3.
S2 is countable, since a valid C program represents a valid algorithm and every algorithm corresponds to a Turing Machine, so S2 is equivalent to set of all Turing Machines.
S3 is is uncountable, it is proved by diagonalization method.
S4 is uncountable, as set of non-regular languages will have languages which is set of all languages over alphabet {0,1} i.e., S3.
Subscribe
Login
0 Comments