...
Software-testing
October 14, 2023
GATE 2017 [Set-1]
October 14, 2023
Software-testing
October 14, 2023
GATE 2017 [Set-1]
October 14, 2023

GATE 2007

Question 1

Consider the following two statements about the function f(x)=|x|

P. f(x) is continuous for all real values of x
Q. f(x) is differentiable for all real values of x 

Which of the following is TRUE?

A
P is true and Q is false.
B
P is false and Q is true.
C
Both P and Q are true.
D
Both P and Q are false.
Question 1 Explanation: 
f(x) = |x|
→ f(x) is continuous for all real values of x

For every value of x, there is corresponding value of f(x).
For x is positive, f(x) is also positive
x is negative, f(x) is positive.
So, f(x) is continuous for all real values of x.
→ f(x) is not differentiable for all real values of x.
For x<0, derivative is negative
x>0, derivative is positive.
Here, left derivative and right derivatives are not equal.

Correct Answer: A
Question 1 Explanation: 
f(x) = |x|
→ f(x) is continuous for all real values of x

For every value of x, there is corresponding value of f(x).
For x is positive, f(x) is also positive
x is negative, f(x) is positive.
So, f(x) is continuous for all real values of x.
→ f(x) is not differentiable for all real values of x.
For x<0, derivative is negative
x>0, derivative is positive.
Here, left derivative and right derivatives are not equal.

0 0 votes
Article Rating
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x
error: Alert: Content selection is disabled!!