GATE 2010
March 13, 2025GATE 2010
March 13, 2025GATE 2010
Question 29 |
Consider the following matrix . If the eigenvalues of A are 4 and 8, then
x=4, y=10 | |
x=5, y=8 | |
x=-3, y=9 | |
x=-4, y=10 |
Question 29 Explanation:
Trace = {Sum of diagonal elements of matrix}
Here given that eigen values are 4, 8
Sum = 8 + 4 = 12
Trace = 2 + y
⇒ 2 + y = 12
y = 10
Determinant = |2y – 3x|
Product of eigen values = 8 × 4 = 32
2y – 3x = 32
(y = 10)
20 – 3x = 32
-12 = 3x
x = -4
∴ x = -4, y = 10
Correct Answer: D
Question 29 Explanation:
Trace = {Sum of diagonal elements of matrix}
Here given that eigen values are 4, 8
Sum = 8 + 4 = 12
Trace = 2 + y
⇒ 2 + y = 12
y = 10
Determinant = |2y – 3x|
Product of eigen values = 8 × 4 = 32
2y – 3x = 32
(y = 10)
20 – 3x = 32
-12 = 3x
x = -4
∴ x = -4, y = 10
Subscribe
Login
0 Comments