GATE 2010
March 13, 2025GATE 2010
March 13, 2025GATE 2010
Question 41 |
Let w be any string of length n is {0, 1}*. Let L be the set of all substrings of w. What is the minimum number of states in a non-deterministic finite automaton that accepts L?
n-1 | |
n | |
n+1 | |
2n-1 |
Question 41 Explanation:
In order to accept any string of length “n” with alphabet {0,1}, we require an NFA with “n+1” states. For example, consider a strings of length “3” such as “101”, the NFA with 4 states is given below:

Since L is set of all substrings of “w” (Substring of a string is obtained by deleting any prefix or any suffix from string), so if we consider “w” as “101” , then the substrings of w are { ϵ, 0, 1, 10, 01, 101}.
Since the string “101” is also its substring, so we require 4 states (i.e. for n length string, n+1 states are required) and the NFA would be:
Since L is set of all substrings of “w” (Substring of a string is obtained by deleting any prefix or any suffix from string), so if we consider “w” as “101” , then the substrings of w are { ϵ, 0, 1, 10, 01, 101}.
Since the string “101” is also its substring, so we require 4 states (i.e. for n length string, n+1 states are required) and the NFA would be:
Correct Answer: C
Question 41 Explanation:
In order to accept any string of length “n” with alphabet {0,1}, we require an NFA with “n+1” states. For example, consider a strings of length “3” such as “101”, the NFA with 4 states is given below:

Since L is set of all substrings of “w” (Substring of a string is obtained by deleting any prefix or any suffix from string), so if we consider “w” as “101” , then the substrings of w are { ϵ, 0, 1, 10, 01, 101}.
Since the string “101” is also its substring, so we require 4 states (i.e. for n length string, n+1 states are required) and the NFA would be:
Since L is set of all substrings of “w” (Substring of a string is obtained by deleting any prefix or any suffix from string), so if we consider “w” as “101” , then the substrings of w are { ϵ, 0, 1, 10, 01, 101}.
Since the string “101” is also its substring, so we require 4 states (i.e. for n length string, n+1 states are required) and the NFA would be: