JT(IT) 2018 PART-B Computer Science
April 4, 2025GATE 2016 [Set-2]
April 4, 2025JT(IT) 2018 PART-B Computer Science
Question 21 |
Which of the following statements is/are correct?
- (i) If the rank of the matrix of given vectors is equal to the number of vectors, then the vectors are linearly independent.
(ii) If the rank of the matrix of given vectors is less than the number of vectors, then the vectors are linearly dependent.
Both (i) and (ii)
| |
Only (ii)
| |
Only (i) | |
Neither (i) nor (ii) |
Question 21 Explanation:
The Rank of a Matrix
→ You can think of an r x c matrix as a set of r row vectors, each having c elements; or you can think of it as a set of c column vectors, each having r elements.
→ The rank of a matrix is defined as (a) the maximum number of linearly independent column vectors in the matrix or (b) the maximum number of linearly independent row vectors in the matrix. Both definitions are equivalent.
For an r x c matrix,
1. If r is less than c, then the maximum rank of the matrix is r.
2. If r is greater than c, then the maximum rank of the matrix is c.
→ The rank of a matrix would be zero only if the matrix had no elements. If a matrix had even one element, its minimum rank would be one.
→ You can think of an r x c matrix as a set of r row vectors, each having c elements; or you can think of it as a set of c column vectors, each having r elements.
→ The rank of a matrix is defined as (a) the maximum number of linearly independent column vectors in the matrix or (b) the maximum number of linearly independent row vectors in the matrix. Both definitions are equivalent.
For an r x c matrix,
1. If r is less than c, then the maximum rank of the matrix is r.
2. If r is greater than c, then the maximum rank of the matrix is c.
→ The rank of a matrix would be zero only if the matrix had no elements. If a matrix had even one element, its minimum rank would be one.
Correct Answer: A
Question 21 Explanation:
The Rank of a Matrix
→ You can think of an r x c matrix as a set of r row vectors, each having c elements; or you can think of it as a set of c column vectors, each having r elements.
→ The rank of a matrix is defined as (a) the maximum number of linearly independent column vectors in the matrix or (b) the maximum number of linearly independent row vectors in the matrix. Both definitions are equivalent.
For an r x c matrix,
1. If r is less than c, then the maximum rank of the matrix is r.
2. If r is greater than c, then the maximum rank of the matrix is c.
→ The rank of a matrix would be zero only if the matrix had no elements. If a matrix had even one element, its minimum rank would be one.
→ You can think of an r x c matrix as a set of r row vectors, each having c elements; or you can think of it as a set of c column vectors, each having r elements.
→ The rank of a matrix is defined as (a) the maximum number of linearly independent column vectors in the matrix or (b) the maximum number of linearly independent row vectors in the matrix. Both definitions are equivalent.
For an r x c matrix,
1. If r is less than c, then the maximum rank of the matrix is r.
2. If r is greater than c, then the maximum rank of the matrix is c.
→ The rank of a matrix would be zero only if the matrix had no elements. If a matrix had even one element, its minimum rank would be one.