...
Theory-of-Computation
December 6, 2023
Theory-of-Computation
December 6, 2023
Theory-of-Computation
December 6, 2023
Theory-of-Computation
December 6, 2023

Theory-of-Computation

Question 32

Define for a context free language L ⊆ {0,1}*, init(L) = {u ∣ uv ∈ L for some v in {0,1}∗} (in other words, init(L) is the set of prefixes of L)
Let L = {w ∣ w is nonempty and has an equal number of 0’s and 1’s}
Then init(L) is

A
the set of all binary strings with unequal number of 0’s and 1’s
B
the set of all binary strings including the null string
C
the set of all binary strings with exactly one more 0’s than the number of 1’s or one more 1 than the number of 0’s
D
None of the above
Question 32 Explanation: 
(B) is the answer. Because for any binary string of 0’s and 1’s we can append another string to make it contain equal no. of 0’s and 1’s, i.e., any string over {0,1} is a prefix of a string in L.
Correct Answer: B
Question 32 Explanation: 
(B) is the answer. Because for any binary string of 0’s and 1’s we can append another string to make it contain equal no. of 0’s and 1’s, i.e., any string over {0,1} is a prefix of a string in L.
0 0 votes
Article Rating
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x
error: Alert: Content selection is disabled!!