Digital-Logic-Design
October 15, 2023Data-Structures
October 15, 2023Digital-Logic-Design
Question 313 |
What is the decimal value of the floating-point number C1D00000 (hexadecimal notation)? (Assume 32-bit, single precision floating point IEEE representation)
28 | |
-15 | |
-26 | |
-28 |
Question 313 Explanation:
Floating Point number in Hexadecimal = C1D00000
Floating Point number in Binary = 1100 0001 1101 0000 0000 0000 0000 0000
In 32-bit, single precision floating point IEEE representation, first MSB represents sign of mantissa: 1 is used to represent a negative mantissa and 0 for a positive value of mantissa, next 8 bits are for exponent value and then 23 bits represents mantissa.
Value of exponent = 131-127 = 4
Mantissa = -1.1010000 0000 0000 0000 0000
Floating point number = -1.1010000 0000 0000 0000 0000
Converting the above one into decimal no -(1*20+1*2-1*0*2-2+1*2-2+0* 2-3 +…..)
= -(1+½+⅛)=-13/8
Decimal value =sign*Exponent*mantissa=1*4*-13/8
Floating Point number in Binary = 1100 0001 1101 0000 0000 0000 0000 0000
In 32-bit, single precision floating point IEEE representation, first MSB represents sign of mantissa: 1 is used to represent a negative mantissa and 0 for a positive value of mantissa, next 8 bits are for exponent value and then 23 bits represents mantissa.
Value of exponent = 131-127 = 4
Mantissa = -1.1010000 0000 0000 0000 0000
Floating point number = -1.1010000 0000 0000 0000 0000
Converting the above one into decimal no -(1*20+1*2-1*0*2-2+1*2-2+0* 2-3 +…..)
= -(1+½+⅛)=-13/8
Decimal value =sign*Exponent*mantissa=1*4*-13/8
= -26
Correct Answer: C
Question 313 Explanation:
Floating Point number in Hexadecimal = C1D00000
Floating Point number in Binary = 1100 0001 1101 0000 0000 0000 0000 0000
In 32-bit, single precision floating point IEEE representation, first MSB represents sign of mantissa: 1 is used to represent a negative mantissa and 0 for a positive value of mantissa, next 8 bits are for exponent value and then 23 bits represents mantissa.
Value of exponent = 131-127 = 4
Mantissa = -1.1010000 0000 0000 0000 0000
Floating point number = -1.1010000 0000 0000 0000 0000
Converting the above one into decimal no -(1*20+1*2-1*0*2-2+1*2-2+0* 2-3 +…..)
= -(1+½+⅛)=-13/8
Decimal value =sign*Exponent*mantissa=1*4*-13/8
Floating Point number in Binary = 1100 0001 1101 0000 0000 0000 0000 0000
In 32-bit, single precision floating point IEEE representation, first MSB represents sign of mantissa: 1 is used to represent a negative mantissa and 0 for a positive value of mantissa, next 8 bits are for exponent value and then 23 bits represents mantissa.
Value of exponent = 131-127 = 4
Mantissa = -1.1010000 0000 0000 0000 0000
Floating point number = -1.1010000 0000 0000 0000 0000
Converting the above one into decimal no -(1*20+1*2-1*0*2-2+1*2-2+0* 2-3 +…..)
= -(1+½+⅛)=-13/8
Decimal value =sign*Exponent*mantissa=1*4*-13/8
= -26
Subscribe
Login
0 Comments