Number-Systems

Question 1

Which one of the following choices gives the correct values of x and y?
A
x is 1 and y is 1
B
x is 0 and y is 1
C
x is 1 and y is 0
D
x is 0 and y is 0
Question 1 Explanation: 

C2 checks the bits d1, d3, d4, d6, d7.

C2=1, d1= 1, d3= 1, d4= 0, d6= 0, d7= 1.

The number of 1s is even. So, even parity is used in this problem.

C1 checks the bits d1, d2, d4, d5, d7.

C1=0, d1= 1, d2= 0, d4= 0, d5= x, d7= 1.

As the parity used is even parity, the value of d5 should be 0.

x=d5=0

 

C8 checks the bitsa d5, d6, d7, d8.

C8=y, d5= x=0, d6= 0, d7= 1, d8= 1.

As the parity used is even parity, the value of C8 should be 0.

C8=y=0.

x=y=0.

Question 2
Let the representation of a number in base 3 be 210. What is the hexadecimal representation of the number?
A
21
B
528
C
D2
D
15
Question 2 Explanation: 

On converting (210)3 in decimal, we will get:=>

 2*32+1*3=2*9+3=2110 

=>(15)16

Question 3
Consider the following representation of a number in IEEE 754 single-precision floating point format with a 
bias of 127.
        S : 1      E : 10000001      F : 11110000000000000000000
Here S, E and F denote the sign, exponent and fraction components of the floating point representation.
The decimal value corresponding to the above representation (rounded to 2 decimal places) is _______
A
-7.75
Question 3 Explanation: 

Sign bit S= 1. The given number is a negative number. 

Biased Exponent E = 27 + 1= 129 

Actual Exponent e = E-127 

= 129- 127

= 2

The decimal value= (-1)s x 1.M x 2e 

= (-1) 1 x 1.1111 x 22 

= - (111.11) 

= - (7 + 0.75) 

= -7.7

Question 4

Write a program in 8085 Assembly language to Add two 16-bit unsigned BCD(8-4-2-1 Binary Coded Decimal) number. Assume the two input operands are in BC and DE Register pairs. The result should be placed in the register pair BC. (Higher order register in the register pair contains higher order digits of operand)

A
Theory Explanation.
Question 5

Consider n-bit (including sign bit) 2’s complement representation of integer number. The range of integer values, N, that can be represented is _________ ≤ N ≤ _________

A
-2n-1 to 2n-1 - 1
Question 6

(a) An asynchronous serial communication controller that uses a start stop scheme for controlling the serial I/O of a system is programmed for a string of length seven bits, one parity bit (odd parity) and one step bit. The transmission rate is 1200 bits/second.
(i) What is the complete bit stream that is transmitted for the string ‘0110101’?
(ii) How many such strings can be transmitted per second?

(b) Consider a CRT display that has a text mode display format of 80 × 25 characters with a 9 × 12 character cell. What is the size of the video buffer RAM for the display to be used in monochrome (1 bit per pixel) graphics mode?

A
Theory Explanation.
Question 7

The number of 1’s in the binary representation of
(3*4096 + 15*256 + 5*16 + 3) are:

A
8
B
8
C
10
D
12
Question 7 Explanation: 
3 × 4096 = 3 × 212
= (11000000000000)2
15 × 256 = 15 × 28
= (111100000000)2
5 × 16 = 5 × 24
= (1010000)2
3 = (11)2
Hence, all binary numbers,

∴ 101's
Question 8

Consider three registers R1, R2 and R3 that store numbers in IEEE-754 single precision floating point format. Assume that R1 and R2 contain the values (in hexadecimal notation) 0x42200000 and 0xC1200000, respectively.

If R3 = R1/R2, what is the value stored in R3?

A
0x40800000
B
0x83400000
C
0xC8500000
D
0xC0800000
Question 8 Explanation: 
Given numbers are 0x42200000 and 0xC1200000 which are stored in the registers R1 and R2, respectively.

R1 = 1.0100..0 X 2132-127
= 1.0100..0 X 25
= 101.0 X 23
= 5 X 8
= 40

R2 = (-1) x 1.0100..0 X 2130-127
= (-1) x 1.0100..0 X 23
= (-1) x 101.0 X 21
= (-1) x5 X 2
= -10
R3 = R1/R2
= -4
= (-1)x 1.0 x 22
Sign = 1
Mantissa = 000..0
Exponent = 2+127 = 129

R3 = 1100 0000 1000 000..0
= 0x C 0 8 0 0 0 0 0
Question 9

The decimal value 0.5 in IEEE single precision floating point representation has

A
fraction bits of 000…000 and exponent value of 0
B
fraction bits of 000…000 and exponent value of −1
C
fraction bits of 100…000 and exponent value of 0
D
no exact representation
Question 9 Explanation: 
(0.5)10 = (1.0)2 × 2–1
So, value of the exponent = -1
and
fraction is 000…000 (Implicit representation)
Question 10

Consider the following floating point number representation

The exponent is in 2's complement representation and mantissa is in the sign magnitude representation. The range of the magnitude of the normalized numbers in this representation is

A
0 to 1
B
0.5 to 1
C
2-23 to 0.5
D
0.5 to (1-2-23)
Question 10 Explanation: 
Maximum value of mantissa will be 23, is where a decimal point is assumed before first 1. So the value is 1 - 2-23.
Question 11

Given √224)r = 13)r.
The value of the radix r is:

A
10
B
8
C
5
D
6
Question 11 Explanation: 
(√224)r = (13)r
Convert r base to decimal.
√2r2 + 25 + 4 = r + 3
Take square both sides,
2r2 + 2r + 4 = r2 + 6r + 9
r2 - 4r - 5 = 0
r2 - 5r + r - 5 = 0
r(r - 5) + (r - 5) = 0
r = -1, 5
r cannot be -1,
So r = 5 is correct answer.
Question 12

Suppose the domain set of an attribute consists of signed four digit numbers. What is the percentage of reduction in storage space of this attribute if  it is stored as an integer rather than in character form?

A
80%
B
20%
C
60%
D
40%
Question 12 Explanation: 
We assume byte addressable memory - nothing smaller than a byte can be used.
We have four digits. So to represent signed 4 digit numbers we need 5 bytes, 4 bytes for four digits and 1 for the sign.
So required memory = 5 bytes.
Now, if we use integer, the largest no. needed to represent is 9999 and this requires 2 bytes of memory for signed representation.
9999 in binary requires 14 bits. So, 2 bits remaining and 1 we can use for sign bit.
So, memory savings,
= 5 - 2/5 × 100
= 60%
Question 13

The octal representation of an integer is (342)8. If this were to be treated as an eight-bit integer is an 8085 based computer, its decimal equivalent is

A
226
B
-98
C
76
D
-30
Question 13 Explanation: 
(342)8 = (011 100 010)2 = (1110 0010)2
If this can be treated as 8 bit integer, then the first becomes sign bit i.e., '1' then the number is negative.
8085 uses 2's complement then

⇒ -30
Question 14

Zero has two representations in

A
Sign magnitude
B
1’s complement
C
2’s complement
D
None of the above
E
Both A and B
Question 14 Explanation: 
Sign magnitude:
+0 = 0000
-0 = 1000
1's complement:
+0 = 0000
-0 = 1111
Question 15

Booth’s coding in 8 bits for the decimal number –57 is

A
0 – 100 + 1000
B
0 – 100 + 100 - 1
C
0 – 1 + 100 – 10 + 1
D
00 – 10 + 100 - 1
Question 15 Explanation: 
Question 16

Consider the values A = 2.0 x 1030, B = -2.0 x 1030, C = 1.0, and the sequence

             X: = A + B    Y: = A + C
             X: = X + C    Y: = Y + B  

executed on a computer where floating-point numbers are represented with 32 bits. The values for X and Y will be

A
X = 1.0, Y = 1.0
B
X = 1.0, Y = 0.0
C
X = 0.0, Y = 1.0
D
X = 0.0, Y = 0.0
Question 16 Explanation: 
Given: 32 bits representation. So, the maximum precision can be 32 bits (In 32-bit IEEE representation, maximum precision is 24 bits but we take best case here). This means approximately 10 digits.
A = 2.0 * 1030, C = 1.0
So, A + C should make the 31st digit to 1, which is surely outside the precision level of A (it is 31st digit and not 31st bit). So, this addition will just return the value of A which will be assigned to Y.
So, Y + B will return 0.0 while X + C will return 1.0.
Question 17

The number 43 in 2’s complement representation is

A
01010101
B
11010101
C
00101011
D
10101011
Question 17 Explanation: 
Positive integers are represented in its normal binary form while negative numbers are represented in its 2′s complement form. Binary representation of 43 is 00101011.
Question 18

Consider the circuit shown below. The output of a 2:1 Mux is given by the function (ac' + bc).

Which of the following is true?

A
f = x1' + x2
B
f = x1'x2 + x1x2'
C
f = x1x2 + x1'x2'
D
f = x1 + x2'
Question 18 Explanation: 
g = (a and x1′) or (b and x1)
g = (1 and x1’) or (0 and x1)
g = x1’
f = ac’ + bc
f = (a and x2′) or (b and x2)
f = (g and x2′) or (x1 and x2)
f = x1’x2’ + x1x2
Question 19

The 2’s complement representation of (-539)10 in hexadecimal is

A
ABE
B
DBC
C
DE5
D
9E7
Question 19 Explanation: 
(539)10 = (0010 0001 1011)2
For (-539)10 = (1101 1110 0100)2
1's complement = (1101 1110 0100)2
2's complement = (1101 1110 0101)2
= (DE5)16
Question 20

Consider the following 32-bit floating-point representation scheme as shown in the formal below. A value is specified by 3 fields, a one bit sign field (with 0 for positive and 1 for negative values), a 24 bit fraction field (with the binary point being at the left end of the fraction bits), and a 7 bit exponent field (in excess-64 signed integer representation, with 16 being the base of exponentiation). The sign bit is the most significant bit.

(a) It is required to represent the decimal value –7.5 as a normalized floating point number in the given format. Derive the values of the various fields. Express your final answer in the hexadecimal.

(b) What is the largest values that can be represented using this format? Express your answer as the nearest power of 10.

A
Theory of Explanation is given below.
Question 21

In 2’s complement addition, overflow

A
is flagged whenever there is carry from sign bit addition
B
cannot occur when a positive value is added to a negative value
C
is flagged when the carries from sign bit and previous bit match
D
None of the above
Question 21 Explanation: 
The left most bit of positive value is zero. And left most bit for negative value is one. The value of 0+1 becomes 1. Then overflow never occurs.
Question 22

Sign extension is a step in

A
floating point multiplication
B
signed 16 bit integer addition
C
arithmetic left shift
D
converting a signed integer from one size to another
Question 22 Explanation: 
Sign extension is a step in converting a signed integer from on size to another.
Question 23

The decimal value 0.25

A
is equivalent to the binary value 0.1
B
is equivalent to the binary value 0.01
C
is equivalent to the binary value 0.00111…
D
cannot be represented precisely in binary
Question 23 Explanation: 
1st Multiplication iteration:
Multiply 0.25 by 2.
0.25×2 = 0.50 (product)
Fractional part = 0.50
Carry = 0
2nd Multiplication iteration:
Multiply 0.50 by 2.
0.50×2 = 1.00 (product)
Fractional part = 0.00
Carry = 1
The fractional part in the 2nd iteration becomes zero and so we stop the multiplication iteration.
Carry from 1st multiplication iteration becomes MSB and carry from 2nd iteration becomes LSB. So the result is 0.01.
Question 24

The 2’s complement representation of the decimal value -15 is

A
1111
B
11111
C
111111
D
10001
Question 24 Explanation: 
15 = 1111
-15 = 11111
1's complement = 10000
2's complement = 10001
Question 25

The following is a scheme for floating point number representation using 16 bits.

Let s, e, and m be the numbers represented in binary in the sign, exponent, and mantissa fields respectively. Then the floating point number represented is:

What is the maximum difference between two successive real numbers representable in this system?

A
2-40
B
2-9
C
222
D
231
Question 25 Explanation: 
Largest gap will be in between two most largest numbers.
The largest number is 1.111111111× 262-31 = (2−2−9)×231
Second largest number is 1.111111110×262-31 = (2−2-8)×231
Difference = (2−2−9)×231 - (2−2-8)×231
= (2-8−2−9) ×231
= 2−9×231
= 222
Question 26

Assuming all numbers are in 2's complement representation, which of the following numbers is divisible by 11111011?

A
11100111
B
11100100
C
11010111
D
11011011
Question 26 Explanation: 
Given: Binary numbers = 11111011
MSB bit is '1' then all numbers are negative
1's complement = 00000100
2's complement = 00000100 + 00000001 = 00000101 = -5
(A) 11100111 - (-25)10
(B) 11100100 - (-28)10
(C) 11010111 - (-41)10
(D) 11011011 - (-37)10
Answer: Option A (-25 is divisible by -5)
Question 27

Convert the following numbers in the given bases into their equivalents in the desired bases.
(a) 110.101)2 = x)10
(b) 1118)10 = y)H

A
(a) 6.625, (b) (45E)H
Question 27 Explanation: 
(a) 1*22 + 1*21 + 0*20 + 1*2-1 + 0*2-2 + 1*2-3
= 4 + 2 + 0 + 0.5 + 0 + 0.125
= 6.625
(b) 1118 mod 16 = E, quotient = 69
69 mod 16 = 5, quotient = 4
4 mod 16 = 4
Writing the mods result in reverse order gives (45E)H.
Question 28

When two 4-bit binary number A = a3a2a1a0 and B = b3b2b1b0 are multiplied, the digit c1 of the product C is given by _________

A
c1 = b1a0 ⊕ a1b0
Question 28 Explanation: 

⇒ c1 = b1a0 ⊕ a1b0
Question 29

Consider the number given by the decimal expression:

  163 * 9 + 162 * 7 + 16 * 5 + 3

The number of 1’s in the unsigned binary representation of the number is ________.

A
9
Question 29 Explanation: 
Hexadecimal representation of a given no. is,
(9753)16
It's binary representation is,
1001011101010011
∴ The no. of 1's is 9.
Question 30
If x and y are two decimal digits and (0.1101)2=(0.8xy5)10, the decimal value of x+y is _______.
A
3
Question 30 Explanation: 
(0.1101)2 = 1/2 + 1/4 + 1/16= 0.5+0.25+ 0.0625 = (0.8125)10 .
x=1 and y=2
x+y= 1+2=3
Question 31
If the numerical value of a 2-byte unsigned integer on a little endian computer is 255 more than that on a big endian computer, which of the following choices represent(s) the unsigned integer on a little endian computer?
A
0x4243
B
0x6665
C
0x0001
D
0x0100
Question 31 Explanation: 

It is given that the unsigned integer is 2-bytes long. It needs 4 hexadecimal digits.

We know the big-endian and little-endian computers differ in how the data is stored in memory.

 

In little endian machines, the last byte of binary representation of the multibyte data-type is stored first. On the other hand, in big endian machines, the first byte of binary representation of the multibyte data-type is stored first.

 

In the hexadecimal representation of the 2-byte number on the little endian machine, the first two hexadecimal digits are for one byte and the last two hexadecimal digits are for the second byte. On the big endian machine it is the other way round. 

 

It is given that the value in little endian representation is 255 more than the value in the big endian machine.

 

From the given options 

A). In little endian = 0x4243 in binary (0100 0010 0100 0011) which has decimal value = 16963

On big endian = 0x4342 in binary (0100 0011 0100 0010) which has decimal value = 17218 

Here the big endian value is higher than the little endian value. So this is not the correct option.

 

B). In little endian 0x6665 in binary (0110 0110 0110 0101) which has the decimal value = 26213

In big endian 0x6566 in binary (0110 0101 0110 0110) which has the decimal value = 25958

The difference = 26213 - 25958 = 255. So this is also the correct option. 

 

C). In little endian 0x0001 in binary (0000 0000 0000 0001) which has the decimal value = 1.

In big endian 0x0100 in binary (0000 0001 0000 0000) has decimal value = 256.

But here also the big endian value is higher than the little endian. So this is not the correct option.

 

D). On the little endian machine for hexadecimal number 0x0100 in binary (0000 0001 0000 0000) which has decimal value = 256. On a big endian machine it is 0x 0001 in binary  (0000 0000 0000 0001) which has decimal value = 1

 

The difference in value of little endian to big endian is 256-1 = 255.

 

Hence 2, 4 are the correct options.

Question 32
The format of the single-precision floating-point representation of a real number as per the IEEE 754 standard is as follows:   Which one of the following choices is correct with respect to the smallest normalized positive number represented using the standard?
A
exponent = 00000001 and mantissa = 00000000000000000000001
B
exponent = 00000001 and mantissa = 00000000000000000000000
C
exponent = 00000000 and mantissa = 00000000000000000000000
D
exponent = 00000000 and mantissa = 00000000000000000000001
Question 32 Explanation: 

The smallest biased exponent for the normalized number is E= 1.

The smallest Mantissa M = 000...0

The smallest positive normalized number = 1.M x 2 E-127

= 1.0 x 2 -126 .

= 2 -126

Question 33

Consider a parity check code with three data bits and four parity check bits. Three of the code words are 0101011, 1001101 and 1110001. Which of the following are also code words?

1. 0010111             
2. 0110110         
3. 1011010             
4. 0111010 
A
1 and 3
B
1, 2 and 3
C
2 and 4
D
1, 2, 3 and 4
Question 33 Explanation: 
Let x1, x2, x3 are data bits, and c1, c2, c3 and c4 are parity check bits.
Given transmitted codewords are

By inspection we can find the rule for generating each of the parity bits,

Now from above we can see that (I) and (III) are only codewords.
Question 34

The number (123456)8 is equivalent to

A
(A72E)16 and (22130232)4
B
(A72E)16 and (22131122)4
C
(A73E)16 and (22130232)4
D
(A62E)16 and (22120232)4
Question 34 Explanation: 
(123456)8 = (001 010 011 100 101 110)2
= (00 1010 0111 0010 1110)2
= (A72E)16
Also,
(001 010 011 100 101 110)2
= (00 10 10 01 11 00 10 11 10)2
= (22130232)4
Question 35

(34.4)8 × (23.4)8 evaluates to

A
(1053.6)8
B
(1053.2)8
C
(1024.2)8
D
None of these
Question 35 Explanation: 
First convert (34.4)8 and (23.4)8 to decimal.
(34.4)8 = 3×81 + 4×80 + 4×8-1
= 24 + 4 + 0.5
= (28.5)10
(23.4)8 = 2×81 + 3×80 + 4×8-1
= 16 + 3 + 0.5
= (19.5)10
Now,
(28.5)10 × (19.5)01 = (555.75)10
Now,
(555.75)10 = ( ? )8
To convert the integer part,

We get, 1053.
To convert the fractional part, keep multiplying by 8 till decimal part becomes 0,

∴ (555.75)10 = (1053.6)8
Question 36
Consider a system that uses 5 bits for representing signed integers in 2's complement format. In this system, two integers A and B are represented as A=01010 and B=11010. Which one of the following operations will result in either an arithmetic overflow or an arithmetic underflow?
A
A+B
B
A-B
C
B-A
D
2*B
Question 37

When multiplicand Y is multiplied by multiplier X = xn-1xn-2 ...x0 using bit-pair recoding in Booth's algorithm, partial products are generated according to the following table.

The partial products for rows 5 and 8 are

A
2Y and Y
B
-2Y and 2Y
C
-2Y and 0
D
0 and Y
Question 37 Explanation: 

⇒ -2Y and 0
Question 38

The addition of 4-bit, two’s complement, binary numbers 1101 and 0100 results in

A
0001 and an overflow
B
1001 and no overflow
C
0001 and no overflow
D
1001 and an overflow
Question 38 Explanation: 
2's complement of 1101 = 0011
2's complement of 1100 = 1100
Add = 1111
Now convert 1111 to normal form.
⇒ 0000 (1's complement)
⇒ 0001 (2's complement) No carry bit.
Question 39

(C012.25)H – (10111001110.101)B =

A
(135103.412)O
B
(564411.412)O
C
(564411.205)O
D
(135103.205)O
Question 39 Explanation: 
(C012.25)H – (10111001110.101)B
= 1100000000010010.00100101 - 0000010111001110.10100000
= 1011101001000011.10000101
= 1011101000011.100001010
= (135103.412)O
Question 40

The two numbers given below are multiplied using the Booth's algorithm.

Multiplicand : 0101 1010 1110 1110 
Multiplier: 0111 0111 1011 1101
How many additions/Subtractions are required for the multiplication of the above two numbers?
A
6
B
8
C
10
D
12
Question 40 Explanation: 
Take the multiples and add 0 to the LSB.
Now we have some values defined for pair of bits in Booth’s Algorithm,
00 → 0
11 → 0
01 → -1
10 → 1
Now after adding 0 to the LSB of the multiplier, start traversing from left to right and accordingly put the values defined above.

Hence, total 8 additions / subtractions required.
Question 41

A processor that has carry, overflow and sign flag bits as part of its program status word (PSW) performs addition of the following two 2's complement numbers 01001101 and 11101001. After the execution of this addition operation, the status of the carry, overflow and sign flags, respectively will be:

A
1, 1, 0
B
1, 0, 0
C
0, 1, 0
D
1, 0, 1
Question 41 Explanation: 

Carry flag = 1
Overflow flag = 0
Sign bit = 0 (MSB bit is 0)
Overflow flag:
In computer processors, the overflow flag is usually a single bit in a system status register used to indicate when an arithmetic overflow has occurred in an operation.
Question 42

The following bit pattern represents a floating point number in IEEE 754 single precision format

 110000011101000000000000000000000
The value of the number in decimal form is
A
-10
B
-13
C
-26
D
None of these
Question 42 Explanation: 
Sign bit is 1 then given number is negative.
Exponent bits - 10000011
Exponent can be added with 127 bias in IEEE single precision format then outval exponent
= 10000011 - 127
= 131 - 127
= 4
→ In IEEE format, an implied 1 is before mantissa, and hence the outval number is
→ 1.101 × 24 = -(11010)2 = -26
Question 43
Consider three floating point numbers A , B and C stored in registers R A , R B and R C , respectively as per IEEE-754 single precision floating point format. The 32-bit content stored in these registers (in hexadecimal form) are as follows.

Which one of the following is FALSE?
A
A + C = 0
B
C = A + B
C
B = 3 C
D
( B - C ) > 0
Question 43 Explanation: 

A= -12, B= +36 and C= +12
A+C= 0
B=3C
(B-C)>0
C≠A+B
Question 44
Let R1 and R2 be two 4-bit registers that store numbers in 2’s complement form. For the operation R1+R2, which one of the following values of R1 and R2 gives an arithmetic overflow?
A
R1 = 1011 and R2 = 1110
B
R1 = 1100 and R2 = 1010
C
R1 = 0011 and R2 = 0100
D
R1 = 1001 and R2 = 1111
Question 44 Explanation: 
Question 45

The exponent of a floating-point number is represented in excess-N code so that:

A
The dynamic range is large.
B
The precision is high.
C
The smallest number is represented by all zeros.
D
Overflow is avoided.
Question 45 Explanation: 
To avoid extra work, excess-N code is used so that all exponent can be represented in positive numbers, starting with 0.
Question 46

Let A = 1111 1010 and B = 0000 1010 be two 8-bit 2's complement numbers. Their product in 2's complement is

A
1100 0100
B
1001 1100
C
1010 0101
D
1101 0101
Question 46 Explanation: 
A = 1111 1010 = -610 [2's complement number]
B = 0000 1010 = 1010 [2's complement number]
A×B = -6×10 = - 6010
⇒ -6010 = 101111002
= 110000112 (1's complement)
= 110001002 (2's complement)
Question 47

What is the result of evaluating the following two expressions using three-digit floating point arithmetic with rounding?

   (113. + -111.) + 7.51
   113. + (-111. + 7.51) 
A
9.51 and 10.0 respectively
B
10.0 and 9.51 respectively
C
9.51 and 9.51 respectively
D
10.0 and 10.0 respectively
Question 47 Explanation: 
(113. + -111.) + 7.51
= (2) + 7.51
= 9.51 (✔️)
113. + (-111. + 7.51)
= 113. + (-103.51)
= 113. + -103
= 10 (✔️)
Question 48

If 73x (in base-x number system) is equal to 54y (in base-y number system), the possible values of x and y are

A
8, 16
B
10, 12
C
9, 13
D
8, 11
Question 48 Explanation: 
(73)x = (54)y
7x+3 = 5y+4
7x-5y = 1
Only option (D) satisfies above equation.
Question 49

Let ⊕ denote the Exclusive OR (XOR) operation. Let ‘1’ and ‘0’ denote the binary constants. Consider the following Boolean expression for F over two variables P and Q:

     F(P,Q) = ((1⊕P)⊕(P⊕Q))⊕((P⊕Q)⊕(Q⊕0)) 

The equivalent expression for F is

A
P+Q
B
C
P⨁Q
D
Question 49 Explanation: 
((1 ⊕ P) ⊕ (P ⊕ Q)) ⊕ ((P ⊕ Q) ⊕ (Q ⊕ 0))
⊕ is associative i.e P ⊕ (Q ⊕ R) = (P⊕Q) ⊕ R.
P ⊕ P = 0, 1 ⊕ P = P’ and 0 ⊕ Q = Q
(1 ⊕ P) ⊕ ((P ⊕ Q) ⊕ (P ⊕ Q)) ⊕ (Q ⊕ 0)
= P’⊕ (0) ⊕ Q
= P’ ⊕ Q
= (P ⊕ Q)’
Question 50

Consider the following minterm expression for F:

  F(P,Q,R,S) = Σ0,2,5,7,8,10,13,15  

The minterms 2, 7, 8 and 13 are 'do not care' terms. The minimal sum-of-products form for F is:

A
B
C
D
Question 50 Explanation: 
Question 51

Let X be the number of distinct 16-bit integers in 2’s complement representation. Let Y be the number of distinct 16-bit integers in sign magnitude representation.

Then X-Y is _________.

A
1
B
2
C
3
D
4
Question 51 Explanation: 
X = 216
Since range is - 215 to 215 - 1
Y = 216 - 1
Here, +0 and -0 are represented separately.
X - Y = 216 - (216 - 1)
= 1
Question 52
Consider the IEEE-754 single precision floating point numbers P=0xC1800000 and Q=0x3F5C2EF4. Which one of the following corresponds to the product of these numbers (i.e., P × Q), represented in the IEEE-754 single precision format?
A
0x404C2EF4
B
0x405C2EF4
C
0xC15C2EF4
D
0xC14C2EF4
Question 53
A particular number is written as 132 in radix-4 representation. The same number in radix-5 representation is ______?
A
110
Question 54

The 16-bit 2’s complement representation of an integer is 1111 1111 1111 0101; its decimal representation is __________.

A
-11
B
-12
C
-13
D
-14
Question 54 Explanation: 
Given number is 1111 1111 1111 0101.
It is a negative number because MSB is 1.
Magnitude of 1111 1111 1111 0101 is 2’s complement of 1111 1111 1111 0101.
1111 1111 1111 0101
0000 0000 0000 1010 : 1’s Complement
0000 0000 0000 1011 : 2’s complement
= (11)10
Hence, 1111 1111 1111 0101 = -11
Question 55

Consider a binary code that consists of only four valid code words as given below:

00000, 01011, 10101, 11110

Let the minimum Hamming distance of the code be p and the maximum number of erroneous bits that can be corrected by the code be q. Then the values of p and q are

A
p=3 and q=1
B
p=3 and q=2
C
p=4 and q=1
D
p=4 and q=2
Question 55 Explanation: 
Hamming distance of a code is minimum distance between any two code words.
Minimum Distance = p = 3

Error bits that can be corrected = (p-1)/2 = (3-1)/2 = 1
∴ p=3 and q=1
Question 56

Consider a quadratic equation x2 - 13x + 36 = 0 with coefficients in a base b. The solutions of this equation in the same base b are x = 5 and x = 6. Then b=________.

A
8
B
9
C
10
D
11
Question 56 Explanation: 
x2 - 13x + 36 = 0 ⇾(1)
Generally if a, b are roots.
(x - a)(x - b) = 0
x2 - (a + b)x + ab = 0
Given that x=5, x=6 are roots of (1)
So, a + b = 13
ab=36 (with same base ‘b’)
i.e., (5)b + (6)b = (13)b
Convert them into decimal value
5b = 510
610 = 610
13b = b+3
11 = b+3
b = 8
Now check with ab = 36
5b × 6b = 36b
Convert them into decimals
5b × 6b = (b×3) + 610
30 = b × 3 + 6
24 = b × 3
b = 8
∴ The required base = 8
Question 57

Given the following binary number in 32-bit (single precision) IEEE-754 format:

00111110011011010000000000000000

The decimal value closest to this floating-point number is

A
1.45 × 101
B
1.45 × 10-1
C
2.27 × 10-1
D
2.27 × 101
Question 57 Explanation: 

For single-precision floating-point representation decimal value is equal to (-1)5 × 1.M × 2(E-127)
S = 0
E = (01111100)2 = (124).
So E – 127 = - 3
1.M = 1.11011010…0
= 20 + 2(-1) + 2(-1) + 2(-4) + 2(-5) + 2(-7)
= 1+0.5+0.25+0.06+0.03+0.007
≈ 1.847
(-1)5 × 1.M × 2(E-127)
= -10 × 1.847 × 2-3
≈ 0.231
≈ 2.3 × 10-1
Question 58

The representation of the value of a 16-bit unsigned integer X in hexadecimal number system is BCA9. The representation of the value of X in octal number system is

A
136251
B
736251
C
571247
D
136252
Question 58 Explanation: 
X = (BCA9)16
Each hexadecimal digit is equal to a 4-bit binary number. So convert
X = (BCA9)16 to binary

Divide the binary data into groups 3 bits each because each octal digit is represented by 3-bit binary number.
X = (001 011 110 010 101 001)2
Note: Two zeroes added at host significant position to make number bits of a multiple of 3 (16 + 2 = 18)
X = (136251)8
Question 59

The n-bit fixed-point representation of an unsigned real number X uses f bits for the fraction part. Let i = n-f. The range of decimal values for X in this representation is

A
2-f to 2i
B
2-f to (2i - 2-f)
C
0 to 2i
D
0 to (2i - 2-f )
Question 59 Explanation: 
Size of the fixed point number → n-bits
Number of bits in fraction part → f-bits
Number of bits in integer part → (n – f) bits

Minimum value:
000…0.000…0 = 0
Maximum value:

= (2 n-f - 1) + (1 - 2 -f
= (2n-f - 2 -f)
= (2i - 2 -f )
Question 60
Consider the unsigned 8-bit fixed point binary number representation below,
b7 b6 b5 b4 b3 b2 b1 b0
where the position of the binary point is between b3 and b2 . Assume b7 is the most significant bit.
Some of the decimal numbers listed below cannot be represented exactly in the above representation:
(i) 31.500   
(ii) 0.875   
(iii) 12.100   
(iv) 3.001
Which one of the following statements is true?
A
None of (i), (ii), (iii), (iv) can be exactly represented
B
Only (ii) cannot be exactly represented
C
Only (iii) and (iv) cannot be exactly represented
D
Only (i) and (ii) cannot be exactly represented
Question 60 Explanation: 
(i) (31.5)10 = (11111.100)2 = 24 + 23 + 22 + 21 + 20 + 2-1
= 16 + 8 + 4 + 2 + 1 + 0.5
= (31.5)10
(ii) (0.875)10 = (00000.111)2
= 2-1 + 2-2 + 2-3
= 0.5 + 0.25 + 0.125
= (0.875)10
(iii) (12.100)10
It is not possible to represent (12.100)10
(iv) (3.001)10 It is not possible to represent (3.001)10
Question 61

Consider Z = X - Y, where X, Y and Z are all in sign-magnitude form. X and Y are each represented in n bits. To avoid overflow, the representation of Z would require a minimum of:

A
n bits
B
n + 2 bits
C
n - 1 bits
D
n + 1 bits
Question 61 Explanation: 
In case of addition of two numbers with the same sign, there is a chance of overflow.
To store overflow/carry bit there should be extra space to accommodate it.
Hence, Z should be n+1 bits.
Question 62

In 16-bit 2's complement representation, the decimal number -28 is:

A
1111 1111 1110 0100
B
1111 1111 0001 1100
C
0000 0000 1110 0100
D
1000 0000 1110 0100
Question 62 Explanation: 
+28 = 0000 0000 0001 1100

1’s complement = 1111 1111 1110 0011
2’s complement = 1’s complement + 1

2’s complement = 1111 1111 1110 0100 = (-28)
Question 63

Two numbers are chosen independently and uniformly at random from the set {1, 2, ..., 13}. The probability (rounded off to 3 decimal places) that their 4-bit (unsigned) binary representations have the same most significant bit is ______.

A
0.502
B
0.461
C
0.402
D
0.561
Question 63 Explanation: 
Correct answer is 0.502
1 - 0001
2 - 0010
3 - 0011
4 - 0100
5 - 0101
6 - 0110
7 - 0111
8 - 1000
9 - 1001
10 - 1010
11 - 1011
12 - 1100
13 - 1101
The probability that their 4-bit binary representations have the same most significant bit is
= P(MSB is 0) + P(MSB is 1)
= (7×7)/(13×13) + (6×6)/(13×13)
= (49+36)/169
= 85/169
= 0.502
Question 64
Consider the equation (43)x = (y3)8 where x and y are unknown. The number of possible solutions is ________.
A
3
B
4
C
5
D
6
Question 65

The base (or radix) of the number system such that the following equation holds is_________.

        312/20 = 13.1     
A
5
B
6
C
7
D
8
Question 65 Explanation: 
Let base of the number system is r.
(3r2 + r + 2) / 2r= (r+3+1/r)
(3r2 + r + 2) / 2r= (r2+3r+1) / r
(3r2 + r + 2) = (2r2+6r+2)
r2 -5r = 0
Therefor r = 5
There are 65 questions to complete.

Access quiz wise question and answers by becoming as a solutions adda PRO SUBSCRIBER with Ad-Free content

Register Now

If you have registered and made your payment please contact solutionsadda.in@gmail.com to get access